首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel biphenyl pyrazole dicarboxamides were identified as potential sodium channel blockers for treatment of neuropathic pain. Compound 20 had outstanding efficacy in the Chung rat spinal nerve ligation (SNL) model of neuropathic pain.  相似文献   

2.
A series of imidazopyridines were evaluated as potential sodium channel blockers for the treatment of neuropathic pain. Several members were identified with good hNa(v)1.7 potency and excellent rat pharmacokinetic profiles. Compound 4 had good efficacy (52% and 41% reversal of allodynia at 2 and 4h post-dose, respectively) in the Chung rat spinal nerve ligation (SNL) model of neuropathic pain when dosed orally at 10mg/kg.  相似文献   

3.
A series of piperazine ureas were designed, synthesized, and evaluated for their potential as novel orally efficacious fatty acid amide hydrolase (FAAH) inhibitors for the treatment of neuropathic and inflammatory pain. We carried out an optimization study of compound 5 to improve its in vitro FAAH inhibitory activity, and identified the 2-pyrimidinylpiperazine derivative 21d with potent inhibitory activity, favorable DMPK profile and brain permeability. Compound 21d showed robust and dose-dependent analgesic efficacy in animal models of both neuropathic and inflammatory pain.  相似文献   

4.
The aim of this study was to design and synthesize two series of N-Mannich bases with imidazolidine-2,4-dione core as a potential anticonvulsant with reduced toxicity and broad antiseizure activity. Preliminary screening revealed that the majority of synthesized compounds were effective in the maximal electroshock seizure (MES) and/or subcutaneous pentylenetetrazole (scPTZ) test. The most active in vivo compound, 18 (3-((4-methylpiperazin-1-yl)methyl)-5,5-diphenylimidazolidine-2,4-dione), exhibited an ED50 value comparable to that of phenytoin in the MES test (38.5 mg/kg vs 28.1 mg/kg), and more importantly, it showed four times higher potency than phenytoin in the 6 Hz test (12.2 mg/kg vs > 60 mg/kg). Additionally, 18 exhibited antiallodynic properties in the von Frey test in neuropathic (oxaliplatin-treated) mice. Compound 18 also demonstrated a broader spectrum of anticonvulsant activity than phenytoin and showed statistically significant antinociceptive properties in selected models of chronic pain.  相似文献   

5.
Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. A series of low molecular weight biaryl substituted pyrazole carboxamides were identified with good in-vitro potency and in-vivo efficacy. Compound 26, a Nav1.7 blocker has excellent efficacy in the Chung model of neuropathic pain.  相似文献   

6.
A series of benzazepinones were synthesized and evaluated for block of Nav1.7 sodium channels. Compound 30 from this series displayed potent channel block, good selectivity versus other targets, and dose-dependent oral efficacy in a rat model of neuropathic pain.  相似文献   

7.
Our knowledge of the ion channels, receptors and signalling mechanisms involved in pain pathophysiology, and which specific channels play a role in subtypes of pain such as neuropathic and inflammatory pain, has expanded considerably in recent years. It is now clear that in the neuropathic state the expression of certain channels is modified, and that these changes underlie the plasticity of responses that occur to generate inappropriate pain signals from normally trivial inputs. Pain is modulated by a subset of the voltage-gated sodium channels, including Nav1.3, Nav1.7, Nav1.8 and Nav1.9. These isoforms display unique expression patterns within specific tissues, and are either up- or down-regulated upon injury to the nervous system. Here we describe our current understanding of the roles of sodium channels in pain and nociceptive information processing, with a particular emphasis on neuropathic pain and drugs useful for the treatment of neuropathic pain that act through mechanisms involving block of sodium channels. One of the future challenges in the development of novel sodium channel blockers is to design and synthesise isoform-selective channel inhibitors. This should provide substantial benefits over existing pain treatments.  相似文献   

8.
Novel inhibitors of fatty acid amide hydrolase   总被引:1,自引:0,他引:1  
A class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain. Compound 17 (20 mg/kg, iv) demonstrates activity in the formalin test that is comparable to morphine (3mg/kg, iv), and is dose-dependently inhibited by the CB1 antagonist SR141716A. In the Chung model, compound 17 shows antineuropathic effects similar to high-dose (100 mg/kg) gabapentin. FAAH inhibition shows potential utility for the clinical treatment of persistent and neuropathic pain.  相似文献   

9.
Voltage-sensitive calcium channels (VSCCs) underlie cell excitability and are involved in the mechanisms that generate and maintain neuropathic and inflammatory pain. We evaluated in rats the effects of two VSCC blockers, ω-conotoxin MVIIA and Phα1β, in models of inflammatory and neuropathic pain induced with complete Freund’s adjuvant (CFA) and chronic constrictive injury (CCI), respectively. We also evaluated the effects of the toxins on capsaicin-induced Ca2+ influx in dorsal root ganglion (DRG) neurons obtained from rats exposed to both models of pain. A single intrathecal injection of Phα1β reversibly inhibits CFA and CCI-induced mechanical hyperalgesia longer than a single injection of ω-conotoxin MVIIA. Phα1β and MVIIA also inhibited capsaicin-induced Ca2+ influx in DRG neurons. The inhibitory effect of Phα1β on capsaicin-induced calcium transients in DRG neurons was greater in the CFA model of pain, while the inhibitory effect of ω-conotoxin MVIIA was greater in the CCI model. The management of chronic inflammatory and neuropathic pain is still a major challenge for clinicians. Phα1β, a reversible inhibitor of VSCCs with a preference for N-type Ca2+ channels, has potential as a novel therapeutic agent for inflammatory and neuropathic pain. Clinical studies are necessary to establish the role of Phα1β in the treatment of chronic pain.  相似文献   

10.
Replacement of the phenyl ring in our previous (morpholinomethyl)aniline carboxamide cannabinoid receptor ligands with a pyridine ring led to the discovery of a novel chemical series of CB2 ligands. Compound 3, that is, 2,2-dimethyl-N-(5-methyl-4-(morpholinomethyl)pyridin-2-yl)butanamide was identified as a potent and selective CB2 agonist exhibiting in vivo efficacy after oral administration in a rat model of neuropathic pain.  相似文献   

11.
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR‐150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR‐150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX‐2, interleukin IL‐6, and tumor necrosis factor (TNF)‐α in CCI rats. By bioinformatic analysis, 3′‐untranslated region (UTR) of Toll‐like receptor (TLR5) was predicted to be a target of miR‐150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR‐150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR‐150 expression and downregulation of TLR5 increased miR‐150, respectively. Overexpression of TLR5 significantly reversed the miR‐150‐induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR‐150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5‐mediated neuroinflammation. Our findings suggest that miR‐150 may provide a novel therapeutic target for neuropathic pain treatment.  相似文献   

12.
13.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   

14.
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1''-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.  相似文献   

15.
MicroRNAs (miRNA) play important roles in neuroinflammation and neuropathic pain development; however, the underlying mechanism requires further investigation. The expression of miR-21-5p was remarkably upregulated in chronic constrictive injury (CCI) rat model. A significant alleviated neuropathic pain development and reduced the expression of cytokines was observed in CCI rat after exogenous injection of miR-21-5p mimic. The dual-luciferase analysis revealed that tissue inhibitor of metalloproteinase-3 (TIMP3) and chemokines C-C motif ligand 1 (CCL1) was direct downstream target of miR-21-5p. Moreover, silencing of TIMP3 and CCL1 could rescue mechanical allodynia, thermal hyperalgesia and cytokine release in CCI rat, suggesting that TIMP3 and CCL1 exert their function by mediating neuroinflammation in neuropathic pain development. Therefore, we have identified a novel miR-21-5p–CCL1/TIMP3-cytokine axis in regulation of neuropathic pain development in CCI rat model, which is valuable for enhancing our understanding of neuropathic pain and developing miRNAs as potential therapeutic options in the future.  相似文献   

16.
Sodium channel blockers are used clinically to treat a number of neuropathic pain conditions, but more potent and selective agents should improve on the therapeutic index of currently used drugs. In a high-throughput functional assay, a novel sodium channel (Na(V)) blocker, N-[[2'-(aminosulfonyl)biphenyl-4-yl]methyl]-N'-(2,2'-bithien-5-ylmethyl)succinamide (BPBTS), was discovered. BPBTS is 2 orders of magnitude more potent than anticonvulsant and antiarrhythmic sodium channel blockers currently used to treat neuropathic pain. Resembling block by these agents, block of Na(V)1.2, Na(V)1.5, and Na(V)1.7 by BPBTS was found to be voltage- and use-dependent. BPBTS appeared to bind preferentially to open and inactivated states and caused a dose-dependent hyperpolarizing shift in the steady-state availability curves for all sodium channel subtypes tested. The affinity of BPBTS for the resting and inactivated states of Na(V)1.2 was 1.2 and 0.14 microM, respectively. BPBTS blocked Na(V)1.7 and Na(V)1.2 with similar potency, whereas block of Na(V)1.5 was slightly more potent. The slow tetrodotoxin-resistant Na(+) current in small-diameter DRG neurons was also potently blocked by BPBTS. [(3)H]BPBTS bound with high affinity to a single class of sites present in rat brain synaptosomal membranes (K(d) = 6.1 nM), and in membranes derived from HEK cells stably expressing Na(V)1.5 (K(d) = 0.9 nM). BPBTS dose-dependently attenuated nociceptive behavior in the formalin test, a rat model of tonic pain. On the basis of these findings, BPBTS represents a structurally novel and potent sodium channel blocker that may be used as a template for the development of analgesic agents.  相似文献   

17.
Burn-induced neuropathic pain is complex, and fat grafting has reportedly improved neuropathic pain. However, the mechanism of fat grafting in improving neuropathic pain is unclear. Previous investigations have found that neuroinflammation causes neuropathic pain, and anti-inflammatory targeting may provide potential therapeutic opportunities in neuropathic pain. We hypothesized that fat grafting in burn scars improves the neuropathic pain through anti-inflammation. Burn-induced scar pain was confirmed using a mechanical response test 4 weeks after burn injuries, and autologous fat grafting in the scar area was performed simultaneously. After 4 weeks, the animals were sacrificed, and specimens were collected for the inflammation test, including COX-2, iNOS, and nNOS in the injured skin and spinal cord dorsal horns through immunohistochemistry and Western assays. Furthermore, pro-inflammatory cytokines (IL-1 β and TNF-α) in the spinal cord were collected. Double immunofluorescent staining images for measuring p-IκB, p-NFκB, p-JNK, and TUNEL as well as Western blots of AKT, Bax/Bcl-2 for the inflammatory process, and apoptosis were analyzed. Fat grafting significantly reduced COX2, nNOS, and iNOS in the skin and spinal cord dorsal horns, as well as IL-1β and TNF-α, compared with the burn group. Moreover, regarding the anti-inflammatory effect, the apoptosis cells in the spinal cord significantly decreased after the fat grafting in the burn injury group. Fat grafting was effective in treating burn-induced neuropathic pain through the alleviation of neuroinflammation and ameliorated spinal neuronal apoptosis.  相似文献   

18.
Woolf CJ 《Life sciences》2004,74(21):2605-2610
Peripheral neuropathic pain, that clinical pain syndrome associated with lesions to the peripheral nervous system, is characterized by positive and negative symptoms. Positive symptoms include spontaneous pain, paresthesia and dysthesia, as well as a pain evoked by normally innocuous stimuli (allodynia) and an exaggerated or prolonged pain to noxious stimuli (hyperalgesia/hyperpathia). The negative symptoms essentially reflect loss of sensation due to axon/neuron loss, the positive symptoms reflect abnormal excitability of the nervous system. Diverse disease conditions can result in neuropathic pain but the disease diagnosis by itself is not helpful in selecting the optimal pain therapy. Identification of the neurobiological mechanisms responsible for neuropathic pain is leading to a mechanism-based approach to this condition, which offers the possibility of greater diagnostic sensitivity and a more rational basis for therapy. We are beginning to move from an empirical symptom control approach to the treatment of pain to one targeting the specific mechanisms responsible. This review highlights some of the mechanisms underlying neuropathic pain and the novel targets they reveal for future putative analgesics.  相似文献   

19.
Effective treatments of neuropathic pain have been a focus of many discovery programs. KCNQ (kv7) are voltage gated potassium channel openers that have the potential for the treatment of CNS disorders including neuropathic pain. Clinical studies have suggested agents such as Retigabine to be a modulator of pain-like effects such as hyperalgesia and allodynia. In this paper, we describe the discovery and evaluation of a series of novel pyrazolopyrimidines and their affinity for potassium channels KCNQ2/3. These pyrazolopyrimidines have also shown good efficacy in the capsaicin-induced acute and secondary mechanical allodynia model and excellent pharmacokinetic properties, which may be superior to Retigabine.  相似文献   

20.
Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI) model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号