首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One aim of this session given at the Torino CD38 Meeting in June, 2006 was to review the role of CD38 in B-cell Chronic Lymphocytic Leukemia (B-CLL), and its potential as a therapeutic target. CD38(high) B-CLL cases show activated phenotypic features as compared with CD38(low) cases. Moreover, a greater percentage of Ki-67 and telomerase activity is documented among CD38(high) cases. Also, CD38 is not merely a negative prognostic marker in B-CLL, but also a key element in the pathogenetic network underlying the disease. A large series of B-CLL cases investigating the CD38 expression on bone marrow B-cells identified CD38 value <10% as the cut-off predicting a longer time to treatment. However, neither CD38 nor ZAP-70 by themselves or in combination were able to anticipate IgVH mutational status. Transferring these findings into clinical ground, 3 groups of B-CLL cases were identified with significantly different clinical courses: i.e., low-risk (no negative prognostic factor), intermediate-risk (1 negative prognostic factor) and high-risk (2-3 negative prognostic factors) patients. Altogether these results suggest that: i) CD38-expressing cells present not only an activation status, but also a different stage differentiation with a more repeated turnover; ii) CD38 contributes to controlling a signaling pathway that confers to B-CLL cells an increased proliferative potential, enhancing aggressiveness of this variant; iii) different CD38 cut off values should be considered for peripheral blood and bone marrow; iv) CD38 seems to independently contribute to prognostic stratification of B-CLL.  相似文献   

2.
Interactions between CD44 and hyaluronan are implicated in the primary adhesion of lymphocytes to endothelium at inflammatory locations. Here we show that preincubation of hyaluronan with full-length recombinant TSG-6 or its Link module domain (Link_TSG6) enhances or induces the binding of hyaluronan to cell surface CD44 on constitutive and inducible cell backgrounds, respectively. These effects are blocked by CD44-specific antibodies and are absent in CD44-negative cells. Enhancement of CD44-mediated interactions of lymphoid cells with hyaluronan by TSG-6 proteins was seen under conditions of flow at shear forces that occur in post-capillary venules. Increases in the number of rolling cells were observed on substrates comprising TSG-6-hyaluronan complexes as compared with a substrate containing hyaluronan alone. In ligand competition experiments, cell surface-bound TSG-6-hyaluronan complexes were more potent than hyaluronan alone in inhibiting cell adhesion to immobilized hyaluronan. Link_TSG6 mutants with impaired hyaluronan binding function had a reduced ability to modulate ligand binding by cell surface CD44. However, some mutants that exhibited close to wild-type hyaluronan binding were found to have either reduced or increased activity, suggesting that some amino acid residues outside of the hyaluronan binding site might be involved in protein self-association, potentially leading to the formation of cross-linked hyaluronan fibers. In turn, cross-linked hyaluronan could increase the binding avidity of CD44 by inducing receptor clustering. The ability of TSG-6 to modulate the interaction of hyaluronan with CD44 has important implications for CD44-mediated cell activity at sites of inflammation, where TSG-6 is expressed.  相似文献   

3.
Plant systemic acquired resistance (SAR) is a long-lasting, broad-spectrum immune response that is mounted after primary pathogen infection. Although SAR has been extensively researched, the molecular mechanisms underlying its activation have not been completely understood. We have previously shown that the electron carrier NAD(P) leaks into the plant extracellular compartment upon pathogen attack and that exogenous NAD(P) activates defense gene expression and disease resistance in local treated leaves, suggesting that extracellular NAD(P) [eNAD(P)] might function as a signal molecule activating plant immune responses. To further establish the function of eNAD(P) in plant immunity, we tested the effect of exogenous NAD(P) on resistance gene-mediated hypersensitive response (HR) and SAR. We found that exogenous NAD(P) completely suppresses HR-mediated cell death but does not affect HR-mediated disease resistance. Local application of exogenous NAD(P) is unable to induce SAR in distal tissues, indicating that eNAD(P) is not a sufficient signal for SAR activation. Using transgenic Arabidopsis plants expressing the human NAD(P)-metabolizing ectoenzyme CD38, we demonstrated that altering eNAD(P) concentration or signaling compromises biological induction of SAR. This result suggests that eNAD(P) may play a critical signaling role in activation of SAR.  相似文献   

4.
ADP-ribosyltransferase-2 (ART2), a GPI-anchored, toxin-related ADP-ribosylating ectoenzyme, is prominently expressed by murine T cells but not by B cells. Upon exposure of T cells to NAD, the substrate for ADP-ribosylation, ART2 catalyzes ADP-ribosylation of the P2X7 purinoceptor and other functionally important cell surface proteins. This in turn activates P2X7 and induces exposure of phosphatidylserine and shedding of CD62L. CD38, a potent ecto-NAD-glycohydrolase, is strongly expressed by most B cells but only weakly by T cells. Following incubation with NAD, CD38-deficient splenocytes exhibited lower NAD-glycohydrolase activity and stronger ADP-ribosylation of cell surface proteins than their wild-type counterparts. Depletion of CD38(high) cells from wild-type splenocytes resulted in stronger ADP-ribosylation on the remaining cells. Similarly, treatment of total splenocytes with the CD38 inhibitor nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide increased the level of cell surface ADP-ribosylation. Furthermore, the majority of T cells isolated from CD38-deficient mice "spontaneously" exposed phosphatidylserine and lacked CD62L, most likely reflecting previous encounter with ecto-NAD. Our findings support the notion that ecto-NAD functions as a signaling molecule following its release from cells by lytic or nonlytic mechanisms. ART2 can sense and translate the local concentration of ecto-NAD into corresponding levels of ADP-ribosylated cell surface proteins, whereas CD38 controls the level of cell surface protein ADP-ribosylation by limiting the substrate availability for ART2.  相似文献   

5.
Leukocyte cell surface antigen CD38 is a single-transmembrane protein whose extracellular domain has catalytic activity for NAD(+) glycohydrolase (NADase). We previously reported that b-series gangliosides inhibit the NADase activity of the extracellular domain of CD38 expressed as a fusion protein [Hara-Yokoyama, M., Kukimoto, I., Nishina, H., Kontani, K., Hirabayashi, Y., Irie, F., Sugiya, H., Furuyama, S., and Katada, T. (1996) J. Biol. Chem. 271, 12951-12955]. In the present study, we examined the effect of exogenous gangliosides on the NADase activity of CD38 on the surface of retinoic acid-treated human leukemic HL60 cells and CD38-transfected THP-1 cells. After incubation of the cells with G(T1b), inhibition of NADase activity was observed. The time course of inhibition was slower than that of the incorporation of G(T1b) into the cells, suggesting that incorporation into the cell membranes is a prerequisite for inhibition. Inhibition occurred efficiently when G(T1b) and CD38 were present on the same cells (cis interaction) rather than on different cells (trans interaction). Although gangliosides may affect localization of cell surface proteins, indirect immunofluorescence intensity due to CD38 was not affected after G(T1b) treatment. Comparison of the effect of G(T1b) and G(D1a) indicates that the tandem sialic acid residues linked to the internal galactose residue of the gangliotetraose core are crucial to the inhibition. These results suggest a novel role of complex gangliosides for the first time as cell surface inhibitors of CD38 through specific and cis interaction between the oligosaccharide moiety and the extracellular domain.  相似文献   

6.
CD38 is a multifunctional enzyme involved in metabolizing two Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). When incubated with NAD, CD38 predominantly hydrolyzes it to ADP-ribose (NAD glycohydrolase), but a trace amount of cADPR is also produced through cyclization of the substrate. Site-directed mutagenesis was used to investigate the amino acid important for controlling the hydrolysis and cyclization reactions. CD38 and its mutants were produced in yeast, purified, and characterized by immunoblot. Glu-146 is a conserved residue present in the active site of CD38. Its replacement with Phe greatly enhanced the cyclization activity to a level similar to that of the NAD hydrolysis activity. A series of additional replacements was made at the Glu-146 position including Ala, Asn, Gly, Asp, and Leu. All the mutants exhibited enhanced cyclase activity to various degrees, whereas the hydrolysis activity was inhibited greatly. E146A showed the highest cyclase activity, which was more than 3-fold higher than its hydrolysis activity. All mutants also cyclized nicotinamide guanine dinucleotide to produce cyclic GDP. This activity was enhanced likewise, with E146A showing more than 9-fold higher activity than the wild type. In addition to NAD, CD38 also hydrolyzed cADPR effectively, and this activity was correspondingly depressed in the mutants. When all the mutants were considered, the two cyclase activities and the two hydrolase activities were correlated linearly. The Glu-146 replacements, however, only minimally affected the base-exchange activity that is responsible for synthesizing NAADP. Homology modeling was used to assess possible structural changes at the active site of E146A. These results are consistent with Glu-146 being crucial in controlling specifically and selectively the cyclase and hydrolase activities of CD38.  相似文献   

7.
8.
9.
CD40 ligand (CD40L) and CD40 are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, respectively. Their interaction is crucial for the development of a proper immune response. Intervention on this pathway provides an important ground for new treatments targeting autoimmune diseases or helping to fight infection and cancer. We have recently reported on the structure-based design of synthetic molecules with C3 symmetry, named mini-CD40Ls, that can effectively mimic homotrimeric soluble CD40L. Here we show that substitution of a D-prolyl residue for the glycyl within the Lys-Gly-Tyr-Tyr CD40-binding motif leads to a complete loss of cooperativity in the interaction of the mimetic with its cognate receptor as assessed by surface plasmon resonance experiments. The ability of the modified mini-CD40L to induce apoptosis on both human and murine lymphoma cells was not affected by this mutation. However, it was unable to induce the NF-kappaB pathway in the mouse D1 dendritic cell line, which is essential for its complete maturation, but still activated production of IL-12 p40 mRNA. These differential effects might be partly explained by the change in rigidity of the CD40 recognition element. In this study, we not only point out the consequences of the abrogation of the cooperative property in a ligand-receptor interaction on downstream cellular events but also demonstrate the usefulness of synthetic multivalent ligands in dissecting the complex mechanisms implicated in the signalosome.  相似文献   

10.
The cell surface antigen CD38 is a multifunctional ectoenzyme that acts as an NAD(+) glycohydrolase, an ADP-ribosyl cyclase, and also a cyclic ADP-ribose hydrolase. The extracellular catalytic domain of CD38 was expressed as a fusion protein with maltose-binding protein, and was crystallized in the complex with a ganglioside, G(T1b), one of the possible physiological inhibitors of this ectoenzyme. Two different crystal forms were obtained using the hanging-drop vapor diffusion method with PEG 10,000 as the precipitant. One form diffracted up to 2.4 A resolution with synchrotron radiation at 100 K, but suffered serious X-ray damage. It belongs to the space group P2(1)2(1)2(1) with unit-cell parameters of a = 47.9, b = 94.9, c = 125.2 A. The other form is a thin plate, but the data sets were successfully collected up to 2.4 A resolution by use of synchrotron radiation at 100 K. The crystals belong to the space group P2(1) with unit-cell parameters of a = 57.4, b = 51.2, c = 101.1 A, and beta = 97.9 degrees, and contain one molecule per asymmetric unit with a VM value of 2.05 A(3)/Da.  相似文献   

11.
J. M. Boyle  Y. Hey  M. Fox 《Biochemical genetics》1989,27(11-12):655-671
We have previously assigned human ecto-5'-nucleotidase (NT) to chromosome 6 on the basis of conversion of exogenously supplied [14C]AMP to adenosine by whole cells of human and Chinese hamster hybrids carrying chromosome 6. In this paper we demonstrate that the activity on human MRC-5 fibroblasts is typical of previously described and purified ecto-5'-nucleotidases. In contrast to MRC-5 cells, Chinese hamster V79A2 cells weakly express an AMPase activity that is not NT. The cytosolic form of NT in human and hybrid fibroblasts is similar to the ectoenzyme in substrate specificity. Hybrids that lack chromosome 6 express neither the ecto- nor the cytosolic enzyme, suggesting that both forms may be coded by the same gene on chromosome 6. Ecto-ATPase, ecto-ADPase, and ecto-ADP kinase activities are each expressed at similar levels in MRC-5 and V79A2. The ATPase, ADPase and NT activities of MRC-5 cells act sequentially to generate adenosine. A similar cascade acts on V79A2 cells but the lack of NT causes the accumulation of AMP.  相似文献   

12.
The interaction between sialosyl cholesterol (- or neuraminyl cholesterol, - or β-SC) and the plasma membrane of astrocytes was investigated by the use of 14C-labeled - or β-SC. Both - and β-SC were dose-dependently and time-dependently bound to rat astrocytes. The Scatchard plot analyses showed that rat astrocytes bound apparently 9.69 × 109 molecules of both -SC/cell (apparent Kd = 2.29 × 10−5 M) and β-SC/cell (apparent Kd = 5.39 × 10−5 M) at 37°C. Both the binding of -SC to astrocytes and the subsequent inhibition of DNA synthesis were decreased at the low temperature (4°C), and also suppressed by serum proteins including albumin. One molecule of bovine serum albumin (BSA) bound 2.3 molecules of -SC with the slightly lower Kd-value (8.03 × 10−6 M) than that for the binding site on astrocytes. BSA not only suppressed the -SC-binding to astrocytes but also increased its release from the cells to the culture media. Gangliosides such as GM1 and GM3 unaffected the -SC-binding, promoted the small release of -SC from the cell surface, and inhibited the morphological changes of astrocytes induced by -SC. The mechanism of -SC-binding to cultured astrocytes with reference to the effects of serum or gangliosides is discussed.  相似文献   

13.
The ultrastructural distribution of the cellulosome (a cellulose-binding, multicellulase-containing protein complex) on the cell surface of Clostridium thermocellum YS was examined by cytochemical techniques and immunoelectron microscopy. When cells of the bacterium were grown on cellobiose, cellulosome complexes were compacted into quiescent exocellular protuberant structures. However, when the same cells were grown on cellulose, these polycellulosomal organelles underwent extensive structural transformation; after attachment to the insoluble substrate, the protuberances protracted rapidly to form fibrous "contact corridors." The contact zones mediated physically between the cellulosome (which was intimately attached to the cellulose matrix) and the bacterial cell surface (which was otherwise detached from its substrate). In addition, cell-free cellulosome clusters coated the surface of the cellulose substrate. The cellulose-bound cellulosome clusters appear to be the site of active cellulolysis, the products of which are conveyed subsequently to the cell surface via the exocellular contact zones.  相似文献   

14.
Prostaglandin production, angiotensin-converting enzyme, and 5'-nucleotidase were measured in porcine aortic endothelial cells in situ (with a multi-well template on an opened aorta), in primary culture and in subcultures. Changes during culture were monitored and the effects of culture conditions were investigated by growing cells on a biological matrix or on plastic, by adding different sera to the growth medium, and by harvesting cells enzymically or mechanically. Prostacyclin production by endothelium in primary culture is highest immediately after cell isolation and subsequently declines; this pattern is repeated each time the cells are subcultured. The level at which production stabilises is approximately 200 pg X 10(6) cells-1 X h-1. Detaching cells by physical means stimulates production much more than enzymic dispersion; the type of serum or the presence of a biological matrix does not alter prostaglandin production. The relative amount of prostaglandin E produced increases with time, from approximately 20% of the prostacyclin production shortly after isolation to greater than 100% in subcultured cells. None of the culture conditions that we tested altered this trend. Angiotensin-converting enzyme activity decreases during primary culture, but activity can be sustained by including homologous serum (from whole blood or from platelet-free plasma) in the culture medium. The method of harvesting cells, or the presence of a matrix, did not affect enzyme activity. 5'-Nucleotidase also declines during culture, with a progressive decrease in both Km and Vmax from template to primary culture to subcultures. None of the variations in culture conditions prevented this change. Ecto-adenosine-deaminase activity, not detectable in cultured cells, can be measured in the template. Part of this activity was released by the vascular wall and could be due to plasma diffusing from the interstitial space.  相似文献   

15.
Protoplasts of the green freshwater alga Mougeotia were attached to surfaces coated with poly-l-lysine and burst by osmotic shock. Microtubules could be seen by both scanning (SEM) and transmission electron microscopy (TEM) to be associated with the cytoplasmic face of the plasma membrane. The microtubules were identified by treatments with cold and colchicine and by immunofluorescence using antibodies against tubulin.  相似文献   

16.
A functional hetero-oligomeric protein was, for the first time, displayed on the yeast cell surface. A hetero-oligomeric Fab fragment of the catalytic antibody 6D9 can hydrolyze a non-bioactive chloramphenicol monoester derivative to produce chloramphenicol. The gene encoding the light chain of the Fab fragment of 6D9 was expressed with the tandemly-linked C-terminal half of alpha-agglutinin. At the same time, the gene encoding the Fd fragment of the heavy chain of the Fab fragment was expressed as a secretion protein. The combined Fab fragment displayed and associated on the yeast cell surface had an intermolecular disulfide linkage between the light and heavy chains. This protein fragment catalyzed the hydrolysis of a chloramphenicol monoester derivative and exhibited high stability in binding with a transition-state analog (TSA). The catalytic reaction was also inhibited by the TSA. The successful display of a functional hetero-oligomeric catalytic antibody provides a useful model for the display of hetero-oligomeric proteins and enzymes.  相似文献   

17.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

18.
Allergic disease is mediated by high levels of allergen-specific IgE. IgE binding to CD23, the low affinity receptor for IgE, results in a negative feedback signal leading to a decrease in IgE production. Previous studies have shown that CD23 associates as an oligomer and that cooperative binding of at least two lectin domains is required for high affinity IgE binding to CD23. We have previously shown that cooperative binding is required for regulation of IgE production. This study describes the production of several mAbs that bind the stalk region of murine CD23. One of the Abs, 19G5, inhibited the IgE/CD23 interaction at 37 degrees C, but not at 4 degrees C. Analysis of the binding properties of these Abs revealed that CD23 dissociates at high temperatures, such as 37 degrees C; however, the N terminus is constitutively associated, indicating partial, rather than complete, dissociation. A novel finding was that the stalk region, previously thought to mediate trimer association, was not required for oligomerization. These data reveal important information about the structure of CD23 that may be useful in modulating IgE production.  相似文献   

19.
Here, we review the functional roles of cyclic ADP-ribose and CD38, a transmembrane protein with ADP-ribosyl cyclase activity, in mouse social behavior via the regulation of oxytocin (OXT) release, an essential component of social cognition. Herein we describe data detailing the molecular mechanism of CD38-dependent OXT secretion in CD38 knockout mice. We also review studies that used OXT, OXT receptor (OXTR), or CD38 knockout mice. Additionally, we compare the behavioral impairments that occur in these knockout mice in relation to the OXT system and CD38. This review also examines autism spectrum disorder (ASD), which is characterized by social and communication impairments, in relation to defects in the OXT system. Two single nucleotide polymorphisms (SNPs) in the human CD38 gene are possible risk factors for ASD via inhibition of OXT function. Further analysis of CD38 in relation to the OXT system may provide a better understanding of the neuroendocrinological roles of OXT and CD38 in the hypothalamus and of the pathophysiology of ASD. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号