首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Proteinase-activated receptor 2 (PAR(2)), a 7-transmembrane G protein-coupled receptor, contributes to inflammation either positively or negatively in different experimental systems. Previously, we reported that concurrent activation of PAR(2) and TLRs in human lung and colonic epithelial cells resulted in a synergistic increase in NF-κB-mediated gene expression, but a down-regulation of IRF-3-mediated gene expression. In this study, the effect of PAR(2) activation on LPS-induced TLR4 signaling was examined in primary murine macrophages. The PAR(2) activation of wild-type macrophages enhanced LPS-induced expression of the anti-inflammatory cytokine, IL-10, while suppressing gene expression of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12. Similar PAR(2)-mediated effects on LPS-stimulated IL-10 and IL-12 mRNA were also observed in vivo. In contrast, PAR 2-/- macrophages exhibited diminished LPS-induced IL-10 mRNA and protein expression and downstream STAT3 activation, but increased KC mRNA and protein. PAR(2) activation also enhanced both rIL-4- and LPS-induced secretion of IL-4 and IL-13, and mRNA expression of alternatively activated macrophage (AA-M) markers, e.g. arginase-1, mannose receptor, Ym-1. Thus, in the context of a potent inflammatory stimulus like LPS, PAR(2) activation acts to re-establish tissue homeostasis by dampening the production of inflammatory mediators and causing the differentiation of macrophages that may contribute to the development of a Th2 response.  相似文献   

3.
4.
5.
Tumor cell-derived factors, such as interleukin 10 (IL-10), polarize macrophages toward a regulatory M2 phenotype, characterized by the expression of anti-inflammatory cytokines and protumorigenic mediators. Here we explored molecular mechanisms allowing IL-10 to upregulate the protumorigenic protein NGAL in primary human macrophages. Reporter assays of full-length or deletion constructs of the NGAL promoter provided evidence that NGAL production is STAT3 dependent, activated downstream of the IL-10-Janus kinase (Jak) axis, as well as being C/EBPβ dependent. The involvement of STAT3 and C/EBPβ was shown by chromatin immunoprecipitation (ChIP) and ChIP-Western analysis, as well as decoy oligonucleotides scavenging both STAT3 and C/EBPβ in human macrophages. Furthermore, the production of NGAL in macrophages in response to IL-10 induces cellular growth and proliferation of MCF-7 breast cancer cells. We conclude that both STAT3 and C/EBPβ are needed to elicit IL-10-mediated NGAL expression in primary human macrophages. Macrophage-secreted NGAL shapes the protumorigenic macrophage phenotype to promote growth of MCF-7 breast cancer cells. Our data point to a macrophage-dependent IL-10-STAT3-NGAL axis that might contribute to tumor progression.  相似文献   

6.
Although well recognized for its anti-inflammatory effect on gene expression in stimulated monocytes and macrophages, IL-4 is a pleiotropic cytokine that has also been shown to enhance TNF-alpha and IL-12 production in response to stimulation with LPS. In the present study we expand these prior studies in three areas. First, the potentiating effect of IL-4 pretreatment is both stimulus and gene selective. Pretreatment of mouse macrophages with IL-4 for a minimum of 6 h produces a 2- to 4-fold enhancement of LPS-induced expression of several cytokines and chemokines, including TNF-alpha, IL-1alpha, macrophage-inflammatory protein-2, and KC, but inhibits the production of IL-12p40. In addition, the production of TNF-alpha by macrophages stimulated with IFN-gamma and IL-2 is inhibited by IL-4 pretreatment, while responses to both LPS and dsRNA are enhanced. Second, the ability of IL-4 to potentiate LPS-stimulated cytokine production appears to require new IL-4-stimulated gene expression, because it is time dependent, requires the activation of STAT6, and is blocked by the reversible protein synthesis inhibitor cycloheximide during the IL-4 pretreatment period. Finally, IL-4-mediated potentiation of TNF-alpha production involves specific enhancement of mRNA translation. Although TNF-alpha protein is increased in IL-4-pretreated cells, the level of mRNA remains unchanged. Furthermore, LPS-stimulated TNF-alpha mRNA is selectively enriched in actively translating large polyribosomes in IL-4-pretreated cells compared with cells stimulated with LPS alone.  相似文献   

7.
Macrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype. How AMPK activation is linked to IL-4-elicited gene signatures remains unexplored. Using primary human macrophages stimulated with IL-4, we observed elevated ALOX15 mRNA and protein expression, which was attenuated by AMPK activation. AMPK activators, e.g. phenformin and aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited IL-4-evoked activation of STAT3 while leaving activation of STAT6 and induction of typical IL-4-responsive genes intact. In addition, phenformin prevented IL-4-induced association of STAT6 and Lys-9 acetylation of histone H3 at the ALOX15 promoter. Activating AMPK abolished cellular production of 15-lipoxygenase arachidonic acid metabolites in IL-4-stimulated macrophages, which was mimicked by ALOX15 knockdown. Finally, pretreatment of macrophages with IL-4 for 48 h increased the mRNA expression of the proinflammatory cytokines IL-6, IL-12, CXCL9, and CXCL10 induced by subsequent stimulation with lipopolysaccharide. This response was attenuated by inhibition of ALOX15 or activation of AMPK during incubation with IL-4. In conclusion, limiting ALOX15 expression by AMPK may promote an anti-inflammatory phenotype of IL-4-stimulated human macrophages.  相似文献   

8.
9.
10.
11.
The signaling mechanism by which the anti-inflammatory cytokine IL-10 mediates suppression of proinflammatory cytokine synthesis remains largely unknown. Macrophage-specific STAT3-null mice have demonstrated that STAT3 plays a critical role in the suppression of LPS-induced TNF-alpha release, although the mechanism by which STAT3 mediates this inhibition is still not clear. Using an adenoviral system, we have expressed a dominant negative (DN) STAT3 in human macrophages to broaden the investigation to determine the role of STAT3 in IL-10-mediated anti-inflammatory signaling and gene expression. Overexpression of STAT3 DN completely inhibited IL-10-induced suppressor of cytokine signaling 3, tissue inhibitor of MMP-1, TNF receptor expression, and the recently identified IL-10-inducible genes, T cell protein tyrosine phosphatase and signaling lymphocyte activation molecule. STAT3 DN also blocked IL-10-mediated inhibition of MHC class II and COX2 expression. In agreement with the studies in STAT3-null mice, overexpression of the STAT3 DN completely reversed the ability of IL-10 to inhibit LPS-mediated TNF-alpha and IL-6 production. However, real-time PCR analysis showed that STAT3 DN expression did not affect immediate suppression of TNF-alpha mRNA, but did reverse the suppression observed at later time points, suggesting a biphasic regulation of TNF-alpha mRNA levels by IL-10. In conclusion, although STAT3 does appear to be the dominant mediator of the majority of IL-10 functions, there are elements of its anti-inflammatory activity that are STAT3 independent.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
The polarization of adipose tissue-resident macrophages toward the alternatively activated, anti-inflammatory M2 phenotype is believed to improve insulin sensitivity. However, the mechanisms controlling tissue macrophage activation remain unclear. Here we show that adipocytes are a source of Th2 cytokines, including IL-13 and to a lesser extent IL-4, which induce macrophage PPARdelta/beta (Ppard/b) expression through a STAT6 binding site on its promoter to activate alternative activation. Coculture studies indicate that Ppard ablation renders macrophages incapable of transition to the M2 phenotype, which in turns causes inflammation and metabolic derangement in adipocytes. Remarkably, a similar regulatory mechanism by hepatocyte-derived Th2 cytokines and macrophage PPARdelta is found to control hepatic lipid metabolism. The physiological relevance of this paracrine pathway is demonstrated in myeloid-specific PPARdelta(-/-) mice, which develop insulin resistance and show increased adipocyte lipolysis and severe hepatosteatosis. These findings provide a molecular basis to modulate tissue-resident macrophage activation and insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号