首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following NTG mutagenesis, four independent mutants of Anabaena PCC7120 defective in heterocyst differentiation were isolated. These fell into 2 distinct classes; (1) those unable to differentiate heterocysts or show whole-cell acetylene reduction activity; and (2) those unable to differentiate heterocysts but capable of microaerobic acetylene reduction. All mutants grew equally well as the wild type with added nitrogen sources and showed no apparent differences in glutamine synthetase or glutamate synthase activities compared with the wild type. The mutants of class (2) evolved H2 only under microaerobic conditions, suggesting that H2 is evolved via nitrogenase in Anabaena PCC7120.  相似文献   

2.
The question of whether the vegetative cells of Anabaena cylindrica synthesize nitrogenase under anaerobic conditions was studied by immunoferritin labelling of the Fe-Mo protein (Component I). Differentiating cultures, incubated under an argon atmosphere, were treated with DCMU 12 h following initiation of induction. DCMU inhibited photosynthetic O2 production, thus insuring strict anaerobic conditions, but had no effect on nitrogenase induction. Fe-Mo protein levels, as determined by rocket immunoelectrophoresis, increased 5-fold within 24h of DCMU treatment. Immunoferritin labelling of aldehyde fixed, ultrathin cryosections of anaerobically induced filaments showed that the Fe-Mo protein was restricted to the heterocyst. Ferritin labelling was shown to be specific by the following criteria: (a) substituting preimmune goat serum for the anti-Fe-Mo protein IgG prevented ferritin labelling; (b) ferritin-conjugated, non-homologous rabbit anti-goat IgG did not bind; (c) incubation of anti-Fe-Mo protein IgG treated sections with rabbit anti-goat IgG prior to the treatment with the ferritin label also prevented labelling. The results provide direct immunochemical evidence that nitrogenase is restricted to the heterocysts even under strictly anaerobic conditions.  相似文献   

3.
Abstract Two mutants of Anabaena sp. strain CA were used to demonstrate that oxygen-dependent hydrogen uptake was not the primary means to protect the nitrogenase enzyme complex from the deleterious effects of hyperbaric oxygen in vivo. Exposure to air caused the immediate and irreversible inactivation of nitrogenase activity in an oxygen-sensitive mutant, designated strain 22Y. Inactivation was concomitant with the destruction of the molybdo-iron (MoFe) protein of the nitrogenase complex. The mutant 22Y expressed an O2-stable, Ni2+-stimulated hydrogen uptake of up to 2.7 μM H2 per mg dry wt per h. Conversely, after exposure to 1% CO2-99% O2 for 3 h, both wild-type strain CA and a hydrogen uptake deficient (Hup) mutant, strain N9AR, recovered 70–80% of their original acetylene reduction capacity with no apparent perturbations in the MoFe protein.  相似文献   

4.
Cells of the cyanobiont Anabaena azollae isolated from the water fern Azolla filiculoides were found to take up and utilize fructose in the light for mixotrophic growth. Fructose was favored by the cyanobiont as a substrate over sucrose and glucose. Cell growth in the presence of 8 mM fructose led to glycogen accumulation in the cells which approached 20% of the cell dry weight within 2 to 3 days, followed by reduction of glycogen content during the fourth day. Glucose-6-phosphate dehydrogenase activity was increased 5–6-fold in the fructose grown cells from the third day of growth onwards. The frequency of heterocysts in fructose-grown cells increased from 6 to 18%, and acetylene reduction by nitrogenase was increased 3-fold in the presence of fructose as compared with control cells, with maximum values observed between the third and fifth day of mixotrophic growth. Fructose-supported growth yielded a 2–4-fold increase in cell dry weight over controls.It is suggested that fructose-supported development and growth of the cyanobiont in batch cultures may resemble its mixotrophic growth and development in situ in the leaf cavity of the host fern Azolla.Abbreviation G6PDH glucose-6-phosphate dehydrogenase  相似文献   

5.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

6.
The glutamine synthetase (GS) gene from Bacillus subtilis PCI 219 was cloned in Escherichia coli using the vector pBR329. A plasmid, pSGS2, was isolated from a glnA+ transformant and the cloned GS gene was found to be located in a 3.6 kb DNA fragment. The nucleotide sequence of a 1.8 kb segment encoding the GS was determined. This segment showed an open reading frame which would encode a polypeptide of 444 amino acids. The amino acid sequence of this GS gene product has higher homology with that of the Clostridium acetobutylicum GS than that of the E. coli GS.  相似文献   

7.
Following exposure to UV light the synthesis of six polypeptides (112, 100, 89, 76, 71 and 65 kDa) was found to be enhanced or induced in the alga Chlamydomonas reinhardtii. Treatment with 4-nitroquinoline-N-oxide (NQO) resulted in the enhanced/induced synthesis of six polypeptides with molecular masses similar to those enhanced following exposure to UV light. Heat shock resulted in the enhanced synthesis of five polypeptides (89, 76, 71, 60 and 22 kDa), three of which (89, 76 and 71 kDa) had apparently identical mobilities to polypeptides whose synthesis was enhanced following UV treatment.  相似文献   

8.
Filaments of Anabaena variabilis Kütz strain ATCC 29413 grown in the absence of nitrate contain nitrate reductase that is active in permeabilized filaments, but not in intact, living filaments until they have been incubated for about 40 min in the presence of nitrate. The delayed acquisition of the ability to reduce nitrate is insensitive to chloramphenicol. Thus, switching on of enzyme activity in the presence of nitrate does not involve protein synthesis and nitrate reductase activity is not regulated by the amount of enzyme present.  相似文献   

9.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
Abstract In Trichodesmium contortum , nitrogenase was detected in only a limited number (about 10%) of microscopically distinguishable, consecutively arranged cells in central regions of the trichomes. Cells with nitrogenase also contained the photosystem II associated pigment phycoerythrin. These cells were not distinguishable from other cells on a structural basis, but were clearly visible at low magnification microscopy as all in the zone were more compact and shorter than those on either side. The compartmentalisation of nitrogenase into a chain of cells and in a possibly photosynthetic environment represents a previously undescribed phenomenon. The nitrogenase containing cells apparently perform the O2 protective function of heterocysts yet are different in several aspects.  相似文献   

11.
Birgitta Bergman 《Planta》1981,152(4):302-306
Raising the pO2 reduced nitrogenase activity (C2H2 reduction) of Anabaena cylindrica for both glyoxylate-treated (5 mM) and untreated cells. The stimulation caused by glyoxylate, however, increased with increases of pO2 from 2 to 99 kPa. As the pO2 increased the net CO2 fixation was lowered (Warburg effect) while the CO2 compensation point increased. Glyoxylate partly relieved this sensitivity of net photosynthesis to oxygen and reduced the compensation point considerably. The cells used were preincubated in the dark to exhaust photosynthetic pools. A more pronounced reduction in sensitivity of nitrogenase to oxygen for glyoxylate-treated cells was evident when a preincubation in air with reduced pCO2 (13 l l-1) was used. This was, however, not evident until after a 10-h incubation in air. Before this point 2 kPa O2 sustained the highest nitrogenase activity. Addition of 0.5 and 5 mM of HCO 3 - to Anabaena cultures preincubated at low CO2 levels (29 l l-1) abolished the stimulatory effect of glyoxylate on the nitrogenase. Thus, the results sustain the suggestion that glyoxylate may act as an inhibitor of photorespiratory activities in cyanobacteria and can be used as a means of increasing their nitrogen and CO2 fixation capacities.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

12.
Acetobacter diazotrophicus is a nitrogen-fixing bacterium that grows inside sugar cane plant tissue where the sucrose concentration is approximately 10%. The influence of high sugar content on nitrogenase was measured in the presence of oxygen and of nitrogen added in the form of ammonium and amino acids. In all parameters analyzed, 10% sucrose protected nitrogenase against inhibition by oxygen, ammonium, some amino acids, and also to some extent by salt stress. The oxygen concentration at which inhibition occurred increased from 2 kPa in 1% glucose or gluconic acid, to 4 kPa (0.4 atm) in 10% sucrose. Nitrogenase activity was partially inhibited by increased ammonium levels (2.0, 5.0, and 10.0 mM) in the presence of 1% sucrose, but the cells maintained their nitrogenase activity at 10% sucrose. This could be explained by the slow ammonium assimilation by the cells in the presence of high sucrose concentrations, i.e., independent of its concentration between 2 and 10 mM, the assimilation of ammonium was reduced to one-third in cells grown with 10% sucrose. Some amino acids were also tested in the presence of 1 and 10% sucrose. Cells grown in 1% sucrose had their nitrogenase activity reduced by 50–98% in the presence of glutamic acid, glutamine, alanine, asparagine, or threonine, whereas with 10% sucrose, nitrogenase activity was increased by glutamic acid and was reduced by only 61–73% by the other amino acids. The effect of NaCl concentrations (0.0, 0.25, 0.5, 0.75, or 1.0%) was also studied at the two concentrations of sucrose. Nitrogenase activity and growth of A. diazotrophicus, which was visualized by the pellicle formation in semi-solid medium, showed sensitivity even to low NaCl concentrations, which was somewhat relieved at the higher sucrose level. These observations indicate different osmotolerance mechanisms for sucrose and salt. Received: 23 June 1998 / Accepted: 6 October 1998  相似文献   

13.
The amino acid leucine was transported by the cyanobacterium Anabaena variabilis. The K m for transport was 10.8 M; the V max was 8.7 nmoles min–1 mg–1 chlorophyll a. Transport of leucine was energy dependent: uptake of leucine was inhibited in the dark, and by DCMU and cyanide. Transport was neither dependent on nor enhanced by Na+. Prior growth of cells with leucine did not repress transport of [14C]-leucine. Alanine, glycine, valine, and methionine were strong competitive inhibitors of leucine uptake; serine, threonine, isoleucine, norleucine, and d-alanine competitively inhibited to a lesser degree. Other amino acids or amino acid analogues, including d-leucine, -aminoisobutyrate, and d-serine did not inhibit the transport of leucine.Abbreviations Chl a chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TES N-tris(hydroxymethyl)-2-aminoethane-sulfonic acid - TCA trichloroacetic acid - Tris N-tris(hydroxymethyl)aminoethane  相似文献   

14.
Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.  相似文献   

15.
The presence and localization of a reversible hydrogenase in non-N2-fixing cells of the filamentous cyanobacterium Anabaena variabilis were investigated by in vitro activity measurements, native-PAGE/activity stain, SDS-PAGE/Western immunoblots, and immunogold localization. Reversible hydrogenase activity was induced approximately 100-fold by sparging the cell suspensions with a mixture of 99% argon and 1% CO2 for 20–26 h. Native-PAGE/activity stain demonstrated the presence of an in vitro functional enzyme with an apparent molecular mass of 118 kDa. Native-PAGE/Western immunoblots, using polyclonal antisera directed against purified hydrogenase from the purple sulphur bacterium Thiocapsa roseopersicina, detected two native proteins with molecular masses of 118 and 133 kDa, respectively. SDS-PAGE/Western immunoblots confirmed the presence of a single polypeptide with a molecular mass of approximately 40 kDa in both induced and non-induced cells. Immunocytolocalization experiments using ultrathin sections again demonstrated the presence of hydrogenase in both induced and non-induced cells. A higher specific labeling was associated with the thylakoid regions, which, using an image analyzer, was calculated to be approximately 4 x higher per cell area compared to in the centroplasm. It is suggested that anaerobic incubation induces higher reversible hydrogenase activity, regulated mainly at the level of activating (pre)existing form(s) of inactive enzyme(s)/protein(s), maybe in combination with synthesis of additional subunit(s).  相似文献   

16.
17.
Abstract Intact filaments of the cyanobacterium Anabaena variabilis switch off nitrogenase activity very rapidly upon addition of NH4Cl when incubated in an alkaline environment (pH 10.0) permitting a fast NH3-influx into the cells. When assayed in cell-free extracts (prepared from ammonia-treated filaments), nitrogenase remains inhibited in the presence of an ATP-regenerating system. Furthermore, l -methionine- d,l -sulfoximine, an inhibitor of glutamine synthetase, added to the filaments, prevents inactivation of nitrogenase by ammonia, showing that ammonia is not the compound directly responsible for nitrogenase switch-off.  相似文献   

18.
The cyanobacterium Anabaena variabilis showed a pH dependent uptake of ethylenediamine. No uptake of ethylenediamine was detected at pH 7.0. At higher pH values (e.g. pH 8.0 and pH 9.0) accumulation did occur and was attributed to diffusion of uncharged ethylenediamine in response to a pH gradient. A biphasic pattern of uptake was observed at these higher pH values. Treatment with l-methionine-d,l-sulphoximine (MSX) to inactivate glutamine synthetase (GS) inhibited the second slower phase of uptake without any significant alteration of the initial uptake. Therefore for sustained uptake, metabolism of ethylenediamine via GS was required. NH 4 + did not alter the uptake of ethylenediamine. Ethylenediamine was converted in the second phase of uptake to an analogue of glutamine which could not be detected in uptake experiments at pH 7.0 or in uptake experiments at pH 9.0 following pretreatment of cells with MSX. Ethylenediamine treatment inhibited nitrogenase activity and this inhibition was greatest at high pH values.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1 piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - Tricine N-tris(hydroxymethyl) methylglycine  相似文献   

19.
The nitrogen-fixing cyanobacterium Anabaena variabilis (ATCC 29413) was cultivated as continuous culture under a 12 h: 12 h light-dark cycle. In the light, photosynthetic activity resulted in a continuous increase in cellular glycogen content, followed by an almost complete dissimilation of the polysaccharide during the dark period. Nitrogenase activity, assayed by the acetylene reduction technique, was low at the end of the dark period and increased quickly upon illumination to reach a maximum after 4 to 6 h of light. The activity rapidly declined after darkening the culture. Increase and decrease of activity were accompanied by a change in the electrophoretic mobility of the Fe-protein of nitrogenase (dinitrogenase reductase) indicative of enzyme modification being involved in the diurnal control of nitrogenase activity. Modification and demodification of the Fe-protein were not coupled to the cell cycle since they followed darkening and illumination when the light or dark periods were changed. Addition of fructose increased nitrogenase activity even in darkness and caused demodification of the Fe-protein. Ammonium chloride supplied at the onset of illumination slowed down the increase of nitrogenase activity. A delayed inhibition of the enzyme was accompanied by partial Feprotein modification only. The reaction was completed after transfer to darkness. The function of enzyme modification in maintaining a constant C: N ratio is discussed and a dominating role of carbohydrate supply in this regulation is indicated by the reported findings.  相似文献   

20.
The kinetics of asymbiotic nitrogenase activity in three strains of the actinomycete Frankia were studied. Decay rates for enzyme activity were determined by adding chloramphenicol to active acetylene-reducing cells and measuring the time required for all activity to cease. Synthesis rates were measured by bubbling oxygen through actively-reducing cells (which totally destroyed all activity) and then measuring the time required for activity to return to normal. Decay rates (t 1/2) for these three strains were approximately 30 to 40 min. Synthesis rates were slower and initial nitrogenase activities were recorded about 110 min (DDB 011610) or 210 min (DDB 020210 and WgCc1.17) after return to air-equilibrated cultures. Frankia strain WgCc1.17 showed a greater sensitivity to oxygen and nitrogenase activity was totally lost when cells were bubbled only with atmospheric concentrations of oxygen. The results presented here indicate that nitrogenase activity turnover time is relatively rapid, on the order of minutes rather than hours or days. However, regulation of nitrogenase activity will differ from one strain to another and asmmbiotic characterization will be useful for understanding nitrogenase regulation in the bacterial-plant symbiosis.Contribution no. 879 from the Battelle-Kettering Laboratory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号