共查询到20条相似文献,搜索用时 15 毫秒
1.
Grennan AK 《Plant physiology》2006,142(4):1343-1345
2.
Baunsgaard L Lütken H Mikkelsen R Glaring MA Pham TT Blennow A 《The Plant journal : for cell and molecular biology》2005,44(4):595-605
An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains. An Arabidopsis mutant, termed Atgwd3, with downregulated expression of the AtGWD3 gene was analysed. In Atgwd3 the amount of leaf starch was constantly higher than wild type during the diurnal cycle. Compared with wild-type leaf starch, the level of C-3 phosphorylation of the glucosyl moiety of starch in this mutant was reduced. Taken together, these data indicate that the C-3 linked phospho-ester in starch plays a so far unnoticed specific role in the degradation of transitory starch. 相似文献
3.
alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves 总被引:1,自引:0,他引:1
Yu TS Zeeman SC Thorneycroft D Fulton DC Dunstan H Lue WL Hegemann B Tung SY Umemoto T Chapple A Tsai DL Wang SM Smith AM Chen J Smith SM 《The Journal of biological chemistry》2005,280(11):9773-9779
The Arabidopsis thaliana genome encodes three alpha-amylase-like proteins (AtAMY1, AtAMY2, and AtAMY3). Only AtAMY3 has a predicted N-terminal transit peptide for plastidial localization. AtAMY3 is an unusually large alpha-amylase (93.5 kDa) with the C-terminal half showing similarity to other known alpha-amylases. When expressed in Escherichia coli, both the whole AtAMY3 protein and the C-terminal half alone show alpha-amylase activity. We show that AtAMY3 is localized in chloroplasts. The starch-excess mutant of Arabidopsis sex4, previously shown to have reduced plastidial alpha-amylase activity, is deficient in AtAMY3 protein. Unexpectedly, T-DNA knock-out mutants of AtAMY3 have the same diurnal pattern of transitory starch metabolism as the wild type. These results show that AtAMY3 is not required for transitory starch breakdown and that the starch-excess phenotype of the sex4 mutant is not caused simply by deficiency of AtAMY3 protein. Knock-out mutants in the predicted non-plastidial alpha-amylases AtAMY1 and AtAMY2 were also isolated, and these displayed normal starch breakdown in the dark as expected for extraplastidial amylases. Furthermore, all three AtAMY double knock-out mutant combinations and the triple knock-out degraded their leaf starch normally. We conclude that alpha-amylase is not necessary for transitory starch breakdown in Arabidopsis leaves. 相似文献
4.
5.
Glaring MA Zygadlo A Thorneycroft D Schulz A Smith SM Blennow A Baunsgaard L 《Journal of experimental botany》2007,58(14):3949-3960
Starch phosphorylation catalysed by the alpha-glucan, water dikinases (GWD) has profound effects on starch degradation in plants. The Arabidopsis thaliana genome encodes three isoforms of GWD, two of which are localized in the chloroplast and are involved in the degradation of transient starch. The third isoform, termed AtGWD2 (At4g24450), was heterologously expressed and purified and shown to have a substrate preference similar to potato GWD. Analyses of AtGWD2 null mutants did not reveal any differences in growth or starch and sugar levels, when compared to the wild type. Subcellular localization studies in Arabidopsis leaves and in vitro chloroplast import assays indicated that AtGWD2 was not targeted to the chloroplasts. The AtGWD2 promoter showed a highly restricted pattern of activity, both spatially and temporally. High activity was observed in the companion cells of the phloem, with expression appearing just before the onset of senescence. Taken together, these data indicate that, although AtGWD2 is capable of phosphorylating alpha-glucans in vitro, it is not directly involved in transient starch degradation. 相似文献
6.
Santelia D Kötting O Seung D Schubert M Thalmann M Bischof S Meekins DA Lutz A Patron N Gentry MS Allain FH Zeeman SC 《The Plant cell》2011,23(11):4096-4111
Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry. 相似文献
7.
Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize 总被引:2,自引:0,他引:2
Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes. 相似文献
8.
A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night 总被引:7,自引:0,他引:7
Chia T Thorneycroft D Chapple A Messerli G Chen J Zeeman SC Smith SM Smith AM 《The Plant journal : for cell and molecular biology》2004,37(6):853-863
Maltose is exported from the Arabidopsis chloroplast as the main product of starch degradation at night. To investigate its fate in the cytosol, we characterised plants with mutations in a gene encoding a putative glucanotransferase (disproportionating enzyme; DPE2), a protein similar to the maltase Q (MalQ) gene product involved in maltose metabolism in bacteria. Use of a DPE2 antiserum revealed that the DPE2 protein is cytosolic. Four independent mutant lines lacked this protein and displayed a decreased capacity for both starch synthesis and starch degradation in leaves. They contained exceptionally high levels of maltose, and elevated levels of glucose, fructose and other malto-oligosaccharides. Sucrose levels were lower than those in wild-type plants, especially at the start of the dark period. A glucosyltransferase activity, capable of transferring one of the glucosyl units of maltose to glycogen or amylopectin and releasing the other, was identified in leaves of wild-type plants. Its activity was sufficient to account for the rate of starch degradation. This activity was absent from dpe2 mutant plants. Based on these results, we suggest that DPE2 is an essential component of the pathway from starch to sucrose and cellular metabolism in leaves at night. Its role is probably to metabolise maltose exported from the chloroplast. We propose a pathway for the conversion of starch to sucrose in an Arabidopsis leaf. 相似文献
9.
Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves 总被引:2,自引:0,他引:2 下载免费PDF全文
Smith SM Fulton DC Chia T Thorneycroft D Chapple A Dunstan H Hylton C Zeeman SC Smith AM 《Plant physiology》2004,136(1):2687-2699
10.
To obtain molecular probes for studies of gene regulation in photosynthetic tissues of maize, we have cloned DNA complementary to poly(A)+RNA extracted from green leaves by insertion into plasmid pBR322 and transformation of E. coli, strain RR1. Colonies were screened by sequential hybridization with 32P-labeled single stranded cDNA synthesized from pooled aliquots of poly(A)+RNA fractionated by sucrose density centrifugation. Among the clones bearing cDNA homologous to high molecular weight poly(A)+RNA, we identified one with an insert of 440 base pairs homologous to mRNA for pyruvate, Pi dikinase, a C-4 carbon cycle protein localized in mesophyll cells of the leaf. Our work indicates that the dikinase subunits are synthesized in the cytoplasm as precursors approximately 13,000 daltons larger than the mature peptide subunits. Leaves of seedlings illuminated during growth have higher levels of pyruvate, Pi dikinase mRNA than leaves of dark-grown plants. 相似文献
11.
Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial beta-amylases 总被引:6,自引:0,他引:6 下载免费PDF全文
Edner C Li J Albrecht T Mahlow S Hejazi M Hussain H Kaplan F Guy C Smith SM Steup M Ritte G 《Plant physiology》2007,145(1):17-28
Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from Arabidopsis, whose activity is affected by glucan phosphorylation. Breakdown of granular starch by a protein fraction purified from leaf extracts increased approximately 2-fold if the granules were simultaneously phosphorylated by recombinant potato glucan, water dikinase (GWD). Using matrix-assisted laser-desorption ionization mass spectrometry several putative starch-related enzymes were identified in this fraction, among them beta-AMYLASE1 (BAM1; At3g23920) and ISOAMYLASE3 (ISA3; At4g09020). Experiments using purified recombinant enzymes showed that BAM1 activity with granules similarly increased under conditions of simultaneous starch phosphorylation. Purified recombinant potato ISA3 (StISA3) did not attack the granular starch significantly with or without glucan phosphorylation. However, starch breakdown by a mixture of BAM1 and StISA3 was 2 times higher than that by BAM1 alone and was further enhanced in the presence of GWD and ATP. Similar to BAM1, maltose release from granular starch by purified recombinant BAM3 (At4g17090), another plastid-localized beta-amylase isoform, increased 2- to 3-fold if the granules were simultaneously phosphorylated by GWD. BAM activity in turn strongly stimulated the GWD-catalyzed phosphorylation. The interdependence between the activities of GWD and BAMs offers an explanation for the severe starch excess phenotype of GWD-deficient mutants. 相似文献
12.
Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress 下载免费PDF全文
Zeeman SC Thorneycroft D Schupp N Chapple A Weck M Dunstan H Haldimann P Bechtold N Smith AM Smith SM 《Plant physiology》2004,135(2):849-858
To study the role of the plastidial alpha-glucan phosphorylase in starch metabolism in the leaves of Arabidopsis, two independent mutant lines containing T-DNA insertions within the phosphorylase gene were identified. Both insertions eliminate the activity of the plastidial alpha-glucan phosphorylase. Measurement of other enzymes of starch metabolism reveals only minor changes compared with the wild type. The loss of plastidial alpha-glucan phosphorylase does not cause a significant change in the total accumulation of starch during the day or its remobilization at night. Starch structure and composition are unaltered. However, mutant plants display lesions on their leaves that are not seen on wild-type plants, and mesophyll cells bordering the lesions accumulate high levels of starch. Lesion formation is abolished by growing plants under 100% humidity in still air, but subsequent transfer to circulating air with lower humidity causes extensive wilting in the mutant leaves. Wilted sectors die, causing large lesions that are bordered by starch-accumulating cells. Similar lesions are caused by the application of acute salt stress to mature plants. We conclude that plastidial phosphorylase is not required for the degradation of starch, but that it plays a role in the capacity of the leaf lamina to endure a transient water deficit. 相似文献
13.
14.
Sabine Raab Gabriele Drechsel Maryam Zarepour Wolfram Hartung Tomokazu Koshiba Florian Bittner Stefan Hoth 《The Plant journal : for cell and molecular biology》2009,59(1):39-51
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence. 相似文献
15.
The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure 总被引:1,自引:0,他引:1
Chastain CJ Xu W Parsley K Sarath G Hibberd JM Chollet R 《The Plant journal : for cell and molecular biology》2008,53(5):854-863
Pyruvate, orthophosphate dikinase (PPDK) is a ubiquitous, low-abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual bifunctional protein kinase (PK)/protein phosphatase (PP). In this paper we document the molecular cloning and functional analysis of the two unique C3 RPs in Arabidopsis thaliana . The first of these, AtRP1 , encodes a typical chloroplast-targeted, bifunctional C4-like RP. The second RP gene, AtRP2 , encodes a monofunctional polypeptide that possesses in vitro RP-like PK activity but lacks PP activity, and is localized in the cytosol. Notably, the deduced primary structures of these two highly homologous polypeptides are devoid of any canonical subdomain structure that unifies all known eukaryotic and prokaryotic Ser/Thr PKs into one of three superfamilies, despite the direct demonstration that AtRP1 is functionally a member of this group. Instead, these C3 RPs and the related C4 plant homologues encode a conserved, centrally positioned, approximately 260-residue sequence currently described as the ' d omain of u nknown f unction 299' (DUF 299). We propose that vascular plant RPs form a unique protein kinase family now designated as the DUF 299 gene family. 相似文献
16.
Tzafrir I Pena-Muralla R Dickerman A Berg M Rogers R Hutchens S Sweeney TC McElver J Aux G Patton D Meinke D 《Plant physiology》2004,135(3):1206-1220
17.
Clp protease is a highly selective protease in E. coli, which consists of two types of subunits, the regulatory subunit with ATPase activity, ClpA, and the catalytic subunit, ClpP. In order to examine the possible association of plant Clp protease with the degradation of protein in senescing chloroplasts, we isolated a cDNA clone for ClpC which is a plant homologue of ClpA from Arabidopsis thaliana in addition to ERD1 which we had isolated earlier [Kiyosue et al. (1993) Biochem. Biophys. Res. Commun. 196: 1214]. We also isolated a clone for the plastidic gene, clpP (pclpP) and cDNA clones for putative nuclear clpP genes (nclpP1-6). We analyzed the expression of these clp genes in Arabidopsis leaves after various dark periods and during natural senescence. The expression of erd1 was increased by dark-induced and by natural senescence, as reported earlier [Nakashima et al. (1997) Plant J. 12: 851], while that of AtclpC was decreased. Two catalytic subunits nclpPs (nclpP3 and nclpP5) showed high expression in naturally senescing leaves, but the expression of pclpP and the other nclpPs was not changed. Immunoblot analysis of chloroplast protein and in vitro import analysis demonstrated that both nucleus-encoded regulatory subunits as well as nClpP5 were localized in the chloroplast stroma. These observations suggest that chloroplast Clp protease is composed of very complicated combinations of subunits, and that ERD1, nClpP5 and pClpP have a role in the concerted degradation of protein in senescing chloroplasts. 相似文献
18.
Fulton DC Stettler M Mettler T Vaughan CK Li J Francisco P Gil M Reinhold H Eicke S Messerli G Dorken G Halliday K Smith AM Smith SM Zeeman SC 《The Plant cell》2008,20(4):1040-1058
This work investigated the roles of beta-amylases in the breakdown of leaf starch. Of the nine beta-amylase (BAM)-like proteins encoded in the Arabidopsis thaliana genome, at least four (BAM1, -2, -3, and -4) are chloroplastic. When expressed as recombinant proteins in Escherichia coli, BAM1, BAM2, and BAM3 had measurable beta-amylase activity but BAM4 did not. BAM4 has multiple amino acid substitutions relative to characterized beta-amylases, including one of the two catalytic residues. Modeling predicts major differences between the glucan binding site of BAM4 and those of active beta-amylases. Thus, BAM4 probably lost its catalytic capacity during evolution. Total beta-amylase activity was reduced in leaves of bam1 and bam3 mutants but not in bam2 and bam4 mutants. The bam3 mutant had elevated starch levels and lower nighttime maltose levels than the wild type, whereas bam1 did not. However, the bam1 bam3 double mutant had a more severe phenotype than bam3, suggesting functional overlap between the two proteins. Surprisingly, bam4 mutants had elevated starch levels. Introduction of the bam4 mutation into the bam3 and bam1 bam3 backgrounds further elevated the starch levels in both cases. These data suggest that BAM4 facilitates or regulates starch breakdown and operates independently of BAM1 and BAM3. Together, our findings are consistent with the proposal that beta-amylase is a major enzyme of starch breakdown in leaves, but they reveal unexpected complexity in terms of the specialization of protein function. 相似文献
19.
Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana 总被引:14,自引:2,他引:12
Martin Hülskamp Steven D. Kopczak Thomas F. Horejsi Brenda K. Kihl Robert E. Pruitt 《The Plant journal : for cell and molecular biology》1995,8(5):703-714
In higher plants, cell-cell recognition reactions taking place following pollination allow the selective restriction of self-pollination and/or interspecific pollination. Many of these systems function by regulating the process of water transfer from the cells found at the stigmatic surface to the individual pollen grain. Interspecific pollination studies on the cruciferous weed Arabidopsis thaliana revealed only a broad specificity of pollen recognition such that pollen from all tested members of the crucifer family were recognized, whereas pollen from almost all other species failed to hydrate. Genetic analysis of A. thaliana has identified three genes that are essential for this recognition process. Recessive mutations in any of these genes result in male sterility due to the production of pollen grains that fail to hydrate when placed on the stigma, but that are capable of hydrating and growing a pollen tube in vitro. Results from mixed pollination experiments suggest that the mutant pollen grains specifically lack a functional pollen-stigma recognition system. All three mutations described also result in a defect in the wax layer normally found on stems and leaves, similar to previously described eceriferum (cer) mutations. Genetic complementation and mapping experiments demonstrated that the newly identified mutants are allelic to the previously identified genes cer1, cer3 and cer6. TEM analysis of the ultrastructure of the pollen coating revealed that all of the mutant pollen grains bear coatings of normal thickness and that tryphine lipid droplets are missing in cer1-147, are reduced in size in cer6-2654 and appear normal in cer3-2186. Temperature shift experiments revealed that the block in the recognition step of the mutant pollen grains can be suppressed by pollination at lower temperatures but not by reduced temperatures during pollen development. These results suggest that the lipids which are altered in the cer mutations may be important in regulating some biophysical property of the pollen coating. 相似文献