首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knox KJ  Clarke PJ 《Oecologia》2006,149(4):730-739
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.  相似文献   

2.
In the Florida Everglades, nutrient enrichment from agricultural outflow and the change in hydrology have collectively contributed to the expansion of cattails (Typha spp.). To assess the effectiveness of prescribed fire in controlling cattails and to predict vegetation dynamics after the fire, it is important to understand the seasonal variation of the soil seed bank and how the seed bank is affected by nutrient enrichment and fire. This paper investigates the effects of season, nutrient enrichment, and fire on soil seed bank species composition, richness, and density along a nutrient gradient in Water Conservation Area 2A (WCA 2A) of the Florida Everglades. Species richness was significantly affected by nutrient enrichment and season but not their interaction. Total seed density, however, was significantly affected by the interaction between nutrient enrichment and season. Yet, at species level, the relationship between seed density, nutrient enrichment and season varied. The highest seed density of cattail occurred in summer at highly enriched sites, but that of sawgrass occurred in fall regardless of enrichment; the seed density of water lily was very low regardless of season and nutrient enrichment, and the highest Amarathus seed density occurred at highly enriched sites year round. Moreover, germination timing differed greatly among species. While cattail seeds had a short incubation period and started to germinate 2–3 days after initiation of the germination assay, sawgrass seeds generally started to germinate 4 weeks later. Further, both the prescribed summer fire at the highly enriched site and the natural winter fire at the moderately enriched site reduced the seed density of cattail but not of sawgrass. Our results suggest that fire application for vegetation recovery in WCA 2A would benefit from explicitly considering seasonal dynamics of the seed bank.  相似文献   

3.
Questions: Do soil seed banks of semi‐arid grasslands reassemble after abandonment from cultivation? Do seeds of native and exotic species persist in the soil? Does time since abandonment affect compositional similarity between the vegetation and seed bank? Does the seed bank contribute to resilience in the vegetation? Location: Native grasslands in northern Victoria, Australia. Methods: Seed bank sampling was conducted in spring and autumn over 3 yrs, across a 100‐yr chronosequence. Species richness, composition and germinant density were determined using the seedling emergence method. Seed persistence was assessed by comparing seed densities in spring and autumn. Seed bank composition was compared with the vegetation. Results: The spring seed bank was dominated at all stages by sedges and rushes; hence, native species richness and seed density were largely unaffected by abandonment. In autumn, grassland species contributed more to the seed bank, but richness was reduced after abandonment and showed little recovery, although seed density partially recovered. Seed bank composition showed some recovery in both seasons. Most species had low persistence in the soil. Compositional similarity between the vegetation and seed bank was greater in old fields than uncultivated grasslands in spring, but not autumn. Conclusions: Resilience varied among seed bank parameters and seed banks had low functional importance. Patterns in the seed bank followed, rather than caused, those in the vegetation. Thus, vegetation recovery cannot rely on the seed bank and persistent seeds were not the key mechanism of resilience in the vegetation.  相似文献   

4.
Abstract Research in Mediterranean‐climate shrublands in both South Africa and Australia shows that recruitment of proteoid shrubs (non‐sprouting, serotinous Proteaceae) is best after warm‐season (summer and autumn) fires and worst after cool‐season (winter and spring) ones. This pattern has been attributed to post‐dispersal seed attrition as well as size of pre‐dispersal seed reserves. Here we investigate patterns of post‐fire recruitment for four proteoid species in the eastern part of South Africa's fynbos biome, which has a bimodal (spring and autumn) rainfall regime. Despite the lack of significant differences in recruitment between cool‐ and warm‐season burns, we find some evidence for favourable recruitment periods following fires in spring and autumn, immediately before, and coinciding with, the bimodal rainfall peaks. This suggests that enhanced recruitment is associated with conditions of high soil moisture immediately after the fire, and that rapid germination may minimize post‐dispersal seed attrition. In two of the species, we also find a shift from peak flowering in winter and spring in the Mediterranean‐climate part of the fynbos biome, to summer and autumn flowering in the eastern part. Because these two species are only weakly serotinous, warm‐season flowering would result in maximal seed banks in spring, which could explain the spring recruitment peak, but not the autumn one. We conclude that eastern recruitment patterns differ significantly from those observed in the western and central parts of the biome, and that fire management protocols for the east, which are currently based on data and experience from the winter‐rainfall fynbos biome, need to be adjusted accordingly. Fire managers in the eastern fynbos biome should be less constrained by requirements to burn within a narrow seasonal range, and should therefore be in a better position to apply the required management burns.  相似文献   

5.
Soil seed banks play a major role in the post-fire regeneration of Mediterranean shrublands. They vary throughout the year in species composition, abundance, and readiness to germinate. After fire, germination occurs mainly during the following fall to spring. Time of germination can determine recruitment success. It is unclear what factors control post-fire germination and its timing. We tested the effects of season and fire on the readily germinable soil seed bank of a seeder-dominated shrubland. Plots were burned early and late in the summer season (ES, LS). Soil samples were collected before and after fire, and germinated in a chamber simulating successively autumn, winter, and spring conditions. Samples were kept moistened at all times. Fire intensity was similar between ES and LS. Several species of Cistus and herbs, mostly annuals, were dominant. Most germination occurred during the simulated-autumn period, with little subsequent germination during the following two periods. Germination speed (T 50) during simulated-autumn was similar for shrubs and herbs, and independent of season or fire. Germination was lower for two shrubs (Rosmarinus officinalis, Cistus salvifolius) and higher for herbaceous dicots in LS than in ES soils. Fire reduced monocots and enhanced Cistus. Germination period significantly interacted with fire and season in some groups or species, altering the simulated-autumn germination peak. We demonstrate that the seed bank can germinate swiftly under simulated-autumn conditions. Hence, water availability is the main controlling factor of germination. Fire season differentially affected some species or groups, and could affect the post-fire regeneration.  相似文献   

6.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

7.
Abstract The influence of factors associated with fire on seed germination of Australian native species is generally well documented, but examples involving the use of smoke as a fire analogue for ecological research remain limited. The role of season of treatment in the efficacy of smoke as a promotive germination agent was investigated over two growing seasons using natural soil stored seedbanks in Banksia woodland near Perth, Western Australia. Smoke was applied to unburnt sites in the autumn, winter and spring of 1994. Germinant emergence and seedling survival of 37 species representing 18 families was monitored in both unburnt sites and in adjacent, recently burnt sites until the second spring after treatment (October 1995). Recruitment from seed was found to be profoundly affected by the season in which dormancy breaking treatment had been applied. The promotive effect extended beyond the initial year of application. For the majority of the species investigated, application of smoke to unburnt sites in autumn promoted a significantly greater germination response than treatment in winter or spring. In only three cases (introduced annuals, the Fabaceae and Hibbenia amplexicaulis) did autumn smoke treatment not yield better germination than in summer-burnt counterparts. However, in almost half of the cases examined, proportions of seedlings surviving past their first summer after emergence in burnt areas were consistently greater than those in smoked or untreated sites. Most notably, no seedlings emerging during the spring of the first year of study survived into the following summer. Implications of the results with respect to future seed bank research and management of native vegetation are discussed.  相似文献   

8.
Seed Ecology of Woody Species in a Caribbean Dry Forest   总被引:1,自引:0,他引:1  
Peak flowering activity among woody species in the tropical dry forests of St. John, U.S. Virgin Islands, coincided with the brief spring rainy season but continued at moderate levels for six months, abating with the autumn rains. Fruit maturation showed a major peak in the long winter dry season and a minor crest during the summer dry season. Seeds of wind-dispersed species disseminated mainly during the winter dry season, while animal dispersal of seeds (74% of all woody species) followed the bimodal pattern (for wet and dry seasons) described for the community as a whole. Under shadehouse conditions, most dry forest tree species germinated well (> 80%) and emerged promptly (within four weeks of planting) and synchronously (90% emergence within a four-week interval). Nine of 29 species tested in the shadehouse manifested dormancy of at least six weeks. Seed germinability varied among tree species, and the viability of most species began to decline following six months of dry storage. Few species retained high germinability after nine months of dry storage. The species composition of soil seed banks did not correspond closely with above-ground communities on three forested sites of varying stand age. In the youngest stand (35 years old), dominated by the weedy, arborescent legume Leucaena leucocephala, the soil seed bank was also dominated by this species, but no seeds of any other tree species were found in the soil samples. Seeds of native trees were scarcely encountered (only one indigenous species) in soil seed bank samples of three forest sites. Local seed rain from less disturbed forest may not be sufficient for prompt recovery of the dry forest community on degraded sites.  相似文献   

9.
The ability of Anthemis chrysantha to form a soil seed bank (SB) was investigated in order to understand better the adaptation of this rare annual species to its arid and unpredictable natural habitat. The natural seed bank population was analyzed in five consecutive plant cohorts (2006–2010) by sampling at two different times: in May, after the germination period, and in October, after the first dispersal episodes due to the beginning winter rainfall. In addition, to determine the persistence in the soil of the two achene morphs of this species’ (white and dark achenes), an artificial SB was created where achenes were buried and exhumed successively after each season, during two years. In all the cohorts studied, seedling emergence from May samples indicated the existence of a persistent seed bank (PSB). Moreover, the dark achenes were largely responsible for the permanent fraction because, after two years of burial in the artificial SB, 85.0% of them remained apparently healthy without having germinated, versus 9.9% of white achenes. Both types of buried achenes exhibited an annual conditional dormancy/non-dormancy cycle, induced by low winter temperatures. The PSB dynamics appeared to oscillate between the minimum values at the end of the germination period in spring (up to 2000 achenes per square meter) and the maximum values of the dispersal episodes in early autumn (up to 6000 achenes per square meter), with fluctuations of achene density due to the variability in annual rainfall. Hence, the SB showed a decline due to the failure of fruiting in the 2008 cohort, caused by drought, although the low value of ca. 560 achenes per square meter was able to establish the following population. Our study highlights the importance of the PSB, which, in “bad” years, may be critical for the persistence of this species.  相似文献   

10.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

11.
Question: We explored the functional significance of seasonal aerial seed banks in two coexisting, heterocarpic annual Asteraceae with dormant (Chrysanthemum coronarium) and non‐dormant (Anacyclus radiatus) achenes. We hypothesised that the plant achene pool is a significant component of total seed reserves, and that within‐season seedling emergence timing is shaped by achene release patterns. Location: SW Spain. Methods: In an observational study, we established temporal achene release patterns. We also quantified the aerial and soil achene pools throughout the release season, and assessed seedling emergence timing. Sowing experiments were used to explore the influence of achene release dynamics on emergence timing, and to establish achene morph‐specific patterns of between‐year distribution of germination. Results: Achene release extended from late spring to late autumn (Chrysanthemum), or from early autumn to early winter (Anacyclus). Within species, achene morphs differed in release timing. Only in Chrysanthemum, a small achene fraction seemed to persist in the soil, and between‐year germination distribution differed among morphs. In coexisting populations, the Anacyclus plant achene pool was an order of magnitude higher than the soil pool throughout the release season, whereas in Chrysanthemum both pools were of the same magnitude during autumn. Within‐year seedling emergence was significantly staggered beneath parent plants compared with the pattern resulting solely from the germination response in soil, with the exception of Chrysanthemum in one of the two study years. Conclusions: Results suggest that seasonal aerial seed banks are effective within‐season, risk‐reducing traits in ruderal Mediterranean habitats characteristic of the study species.  相似文献   

12.
Abstract. The similarity in species composition between seed bank and vegetation was analysed in Mediterranean grasslands in relation to altitude, topography and grazing. Soil samples were collected in permanent plots in autumn at the end of the summer drought period and in spring, before the new seed fall and after the natural winter seed stratification. The seed bank composition was determined by greenhouse germination over a nine-month period. Presence/absence of species in the standing vegetation throughout the complete annual cycle, and the percentage area of bare ground in October, were recorded in the same plots. The species composition of the standing vegetation is clearly determined by altitude, topography and grazing, while the floristic composition of the seed banks is only related to altitude and topography in the case of autumn seed bank and with any of the three factors in the spring seed bank. Relative abundances of grasses, legumes and forbs also show different patterns in vegetation and seed bank data. Sørensen similarity between the autumn seed bank and the vegetation declines as altitude rises, but there are no significant differences for topography and grazing. This similarity decreases in the case of the spring seed bank and does not show any significant relationship with any of the factors. The perennial/ annual ratio and the proportion of bare soil in October are proposed as explanatory variables in a predictive model of similarity between the seed composition of the seed bank and vegetation.  相似文献   

13.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

14.
The size and dynamics of seed banks were studied in grazed and ungrazed Mediterranean pastures at different altitudes and topography positions. The soil samples were collected in autumn and spring and the seed banks composition was determined by greenhouse germination over a 9-month period. The percentage of bare ground and the presence of new seedlings were recorded monthly from October to July in the field. A fall in seed density and species richness in the banks and a tendency for seeds to remain in the banks were linked to a rise in altitude. Germination in lower pastures mainly occurred in October in the numerous gaps left by the summer drought. At higher altitudes, the scarcity of gaps and the harsh climate led to an autumn–spring segregation of germination. On a local scale, the low slope positions and the ungrazed plots had a larger number of persistent seed bank species and a lower percentage of bare ground where seeds could germinate than their respective plots in the upper positions and grazed plots. A higher seed density in ungrazed than grazed plots was only detected in the three highest plots. No seed bank species richness trend was detected. In populations of the same species in different types of environments, the seasonal variation of seed numbers was environment-dependent for the majority of the species. In general, perennial grassland and its related low gaps availability appear to favour persistent seed banks.  相似文献   

15.
The effects of dry heat, wet heat, charred wood and smoke on the germination of dormant soil‐stored seeds from a Eucalyptus woodland in western Victoria were tested by using a glasshouse seed‐bank germination experiment. Seedling density, species richness and species composition were compared between replicated treated and control samples. A total of 5922 seedlings, comprising 59 plant species, was recorded from the soil samples over a period of 150 days. While a few species dominated (including Centrolepis strigosa, Wahlenbergia gracilenta and Ixodia achillaeoides), 26 species were represented by fewer than five seedlings and 18 species were restricted to single treatment types. With the exception of charred wood, all treatments led to a significant increase in seed germination relative to the control. The highest number of germinants was obtained for the smoke treatment, with a mean (± SE) of 12 547 ± 449 seedlings m–2. Heat treatments yielded intermediate densities, with means (± SE) varying between 7445 ± 234 and 9133 ± 445 seedlings m–2. In comparison with the estimates of seed‐bank sizes from other fire‐prone ecosystems, these densities are high. Species richness differed significantly among treatments. Highest mean richness was recorded in the smoke treatment and lowest for the control and charred wood treatments. There were significant differences in seed‐bank species composition between treatment types based on analysis of similarity (Anosim) using Bray–Curtis similarity. While heat was a specific requirement for triggering germination in hard‐seeded species (e.g. Fabaceae), smoke was the most effective trigger for species from a broad range of other families. The potentially confounding effect of physical and chemical mechanisms of germination stimulation in heated bulk soil samples is raised as an issue requiring further investigation in relation to the role of smoke as a germination trigger.  相似文献   

16.
Aims Pond environmental conditions may differ among years with regards to the season in which ponds begin to fill. We experimentally evaluated how seedling emergence, plant growth and phenology differed among years in which filling occurred in winter, autumn or spring.Methods We collected sediments from a natural temporary pond and located them in aquariums. They were placed in a climatic chamber that simulated annual variation in field environmental temperatures and light conditions. Aquariums were assigned to one of three treatments, which differed in the date on which they were filled with water (autumn, winter and spring). We counted the number of seedlings of different species emerged and recorded data about the presence of flowers, seeds or spores every week. The experiment was finished in June, when we harvested the plants and estimated their biomass.Important findings In most species, seedling emergences were primarily related to time after filling, and thus synchronized their life cycles with the unpredictably timed wet phase of the ponds. Autumn filling resulted in the highest numbers of seeds/spores. However, winter filling promoted plant growth the most. In the spring filling treatment, more terrestrial plant seedlings emerged and fewer seeds/spores were produced. When ponds are flooded earlier, plants may produce a higher number of propagules. However, in years when inundation is delayed to spring and hydroperiods are short, seedling emergence deplete the seed bank and there is little to no seed production, while terrestrial monocots are able to colonize pond basin.  相似文献   

17.
Climate warming could shift the timing of seed germination in alpine plants   总被引:1,自引:0,他引:1  

Background and Aims

Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland.

Methods

Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site.

Key Results

Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species.

Conclusions

Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.  相似文献   

18.
Questions: Is seedling emergence limited by the set of viable seeds, by incompatibility between the phenology of seed shedding and timing of mowing, or by dry weather in germination periods? Does seedling mortality fluctuate with season and weather? Location: Negrentino, southern Alps, Switzerland. Methods: Fecundity estimates of the dominant grass Bromus erectus; highly frequent counts of spontaneous seedlings by species and calculation of a community-level average mortality rate across 5 years; species-level records of seed shedding date and measurements of seed mass; measurement of soil moisture. Results: B. erectus produced 143.9 viable seeds/m2/year while the density of its seedlings was a 55 times smaller fraction. Grasses had fewer seedlings than forbs and their phenology of seed shedding was less compatible with mowing date. Soil moisture was a strong determinant of seedling emergence in spring and less so in autumn. Average seedling mortality declined with age of the populations and reached a maximum in an extremely dry summer. In relatively wet summers establishment success was positively related to seed mass. Conclusion: Community structure is susceptible to drought through mechanisms that selectively reduce recruits of coexisting plant functional groups. We propose that (1) more frequent intense droughts tend to reduce species that depend on frequent recruitment from seed, hence favour long-lived clonally spreading species, (2) drought timing selects between species with different germination phenology and drought resistance, and (3) drought impacts can be mitigated by changing management regimes that affect seed shedding.  相似文献   

19.
Gutiérrez JR  Meserve PL 《Oecologia》2003,134(4):511-517
The soil seed bank was monitored in four 75×75 m plots over 6 years (1990–1995) in an arid thorn scrub community in north-central Chile. Sixty-six species were identified. Total seed densities ranged from 2,000 to 42,000/m2. Average mass of shrub seeds was significantly greater than that of other growth-forms. Between 70 and 90% of the seeds were less than 1 mg, with those in the 0.51–1.00 mg size class being most numerous. Seed densities were highly variable between years as well as within years, but were also closely associated with plant cover patterns and rainfall regime. Higher seed densities were found in wet years, and in samples taken in early summer and early autumn (i.e., after seed set); the lowest seed densities were in late winter (i.e., after annual plant germination). The annual plant species with the highest cover were also the most abundant in the soil seed bank and exhibited the largest seed density fluctuations. In general, seed densities were 5- to 10-fold higher during the 1991–1992 El Niño/southern oscillation (ENSO) years than non-ENSO years, showing the importance of this phenomenon for seed bank replenishment in the arid region of Chile.  相似文献   

20.
In this paper, we present results on germination patterns of the seed dispersal system of an endemic Macaronesian plant (Rubia fruticosa). Seeds from this plant are mainly dispersed by endemic lizards and native warblers; therefore, we included three different treatments: control seeds, seeds extracted from lizards and seeds found in warbler droppings. Seeds from the same pool of every treatment were germinated in two different seasons, one in autumn, coinciding with the arrival of the first rains, and another in spring, coinciding with the arrival of the dry season. A clear differential pattern of germination success was observed between the two seasons. Seeds planted in autumn achieved a higher percentage of germination than those sown in spring in all treatments. The great robustness of these results seems to indicate that germination timing is strongly selected in R. fruticosa and this evolutionary trend probably extends to other vascular plants growing in xeric coastal environments of the Macaronesian islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号