首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同植物种子依靠不同的方式实现扩散,啮齿动物对林木种子搬运后在取食点微生境和贮藏方式的选择存在偏好,研究其贮藏行为与微生境的关系是探究幼苗建成的关键。在秦岭中段火地塘林区,采用标签标记法,以锐齿槲栎、华山松和油松种子为材料,探究了小型啮齿动物对松栎混交林建群种种子扩散过程的影响。结果表明:1)油松种子原地取食率显著高于锐齿槲栎和华山松种子,且啮齿动物更倾向于搬运后取食(60%)和埋藏(4.33%)华山松种子,搬运后取食距离也为华山松最大(2.49 m);锐齿槲栎小种子被搬运后埋藏的距离最大(4.92 m)。2)除华山松种子外,其他类型种子被搬运后单个取食的比例均在85%以上;油松种子不存在埋藏点,而其他类型种子90%以上均以单个形式被埋藏。3)大部分种子被啮齿动物搬运后选择在裸地丢弃;锐齿槲栎大种子(87.5%)、小种子(78.57%)和华山松种子(53.33%)较大比例被啮齿动物埋藏在灌丛下方,埋藏在裸地的种子较少。4)大部分种子在灌丛下方被取食,仅华山松种子被啮齿动物搬运到洞穴取食;除油松种子被大量原地取食外,其他类型种子被搬运到取食点的种子比例基本呈现由微生境植被复杂到简单(灌丛—草丛—灌丛边缘—裸地)而逐渐减小的趋势。种子的营养价值及取食和搬运过程中啮齿动物付出的成本是影响种子命运的关键性因子,且啮齿动物对种子埋藏和取食地点的微生境存在较明显的选择性。  相似文献   

2.
张博  石子俊  陈晓宁  廉振民  常罡 《生态学报》2014,34(14):3937-3943
森林鼠类的种子贮藏行为对植物的扩散和自然更新有着非常重要的影响。然而,鼠类是否具有鉴别虫蛀种子的能力还存在一定的争议。此外,鼠类的鉴别能力是否受到食物丰富度变化的影响也未见相关报道。采用标签标记法,2011年秋季(9—11月,食物丰富季节)和2012年春季(4—6月,食物匮乏季节)分别在秦岭南坡的佛坪国家级自然保护区内,调查了森林鼠类对完好和虫蛀锐齿槲栎(Quercus aliena)种子的选择差异。结果显示:1)在秋季,尽管2种类型种子的存留动态没有显著差异,但是在后期虫蛀种子的存留时间相对更长;而在春季2种类型种子的存留动态则极为显著,几乎所有的完好种子(99%)在释放后的第3天就被鼠类全部扩散,虫蛀种子的存留时间则相对较长。2)在秋季,鼠类更喜好扩散后取食完好种子;而在春季,鼠类则喜好在原地取食绝大部分的种子,并且优先取食完好种子。3)在秋季,鼠类贮藏了更多的完好种子;而在春季,尽管完好种子在释放后第1天便达到贮藏高峰,然而由于后期的大量被捕食,2种类型种子在贮藏动态上没有显示出显著差异。研究结果表明秦岭地区森林鼠类可以准确区分完好与虫蛀种子,但是食物丰富度会影响鼠类对种子的选择策略。在食物丰富的秋季,鼠类更多地选择贮藏完好种子;而在食物相对匮乏的春季,鼠类更倾向于同时取食2种类型种子。森林鼠类通过对2种类型种子的鉴别和选择,影响不同种子的命运,从而可能对种子的扩散和自然更新产生重要影响。  相似文献   

3.
Recent studies have demonstrated the higher likelihood of regeneration in forest gaps compared with the understory for the dominant species in pine-oak mixed forest. Here, we tested whether rodent seed predation or dispersal was beneficial for gap regeneration. We tracked the seed predation and dispersal of Quercus aliena var. acuteserrata and Pinus armandii using coded plastic tags in the forest understory close to gaps. Our results demonstrated that the proportions of initial buried seeds of both species were significantly more abundant in the forest understory compared with gaps. After seed caching, however, significantly lower proportions of the seeds of both species survived in the forest understory compared with gaps during the 30-day observation period. The final survival proportions of the seeds cached in the forest understory were lower than those cached in the gaps the next spring, which indicated that small rodents rarely retrieved scatter-hoarded seeds from forest gaps. Our findings suggest that rodent seed predation patterns contribute to the regeneration of the dominant species in gaps compared with the understory in a pine-oak mixed forest. In the study area, reforestation usually involves planting seedlings but direct sowing in forest gaps may be an alternative means of accelerating forest recovery and successional processes.  相似文献   

4.
啮齿动物对秦岭松栎混交林建群种种子扩散格局的影响   总被引:1,自引:0,他引:1  
森林群落中的啮齿动物对林木种子存在着一定的取食偏好性,这种偏好性会使啮齿动物形成不同的捕食和贮藏策略,从而导致林木种子形成不同的扩散格局。以秦岭中段松栎混交林建群种锐齿槲栎、油松、华山松为研究对象,采用塑料标签标记种子方法,研究啮齿动物对种子传播和扩散格局的影响。结果表明:(1)种子特征是影响啮齿动物对其进行扩散的重要因子,油松种子以其质量小、种皮薄等特点吸引啮齿动物大量捕食,其原地取食率达到83.33%,显著高于华山松和锐齿槲栎种子。(2)锐齿槲栎和华山松种子大部分被搬运一定距离后再被取食和埋藏,其中,扩散距离在1 m以内、1—3 m和5—8 m的锐齿槲栎种子分别占59.12%、18.23%和13.26%,最远扩散距离达12 m处;华山松种子扩散距离主要介于在1—3 m(37.85%)和3—5 m(23.73%),在距离5—8 m(13.56%)、8—10 m(11.86%)和大于10 m(11.30%)区间也有一定的分布,最大扩散距离为12 m。(3)啮齿动物倾向于将锐齿槲栎种子搬运至松林内取食,而将华山松种子搬运至栎林内埋藏,说明不同林分类型及其环境因素对林木种子扩散后的分布格局具有重要影响。(4)3种类型种子被啮齿动物捕食的比例以油松最大(96.90%),锐齿槲栎次之(73.57%),华山松最小(50%);次年调查时,未被捕食的种子大部分已经被取食,仅有极少数锐齿槲栎种子萌发成幼苗(1.67%)。啮齿动物的捕食和贮藏行为对林木种子扩散及其成功更新都至关重要。  相似文献   

5.
Scatterhoarding by rodents, whereby seeds are collected and stored for later consumption, can result in seed dispersal. Seeds may be covered in litter on the forest floor (cached) or buried. This is particularly so in the Neotropics for large, nutritious seeds, and where primary dispersers are rare or missing. In African forests, contemporary anthropogenic pressures such as hunting, forest degradation, and fragmentation are contributing toward major declines in large frugivores, yet the potential for scatterhoarding to mitigate this loss is largely unknown. In this study, we used thread‐marked seed to explore the balance between seed predation and dispersal by rodents in Afromontane forest. We studied two tree species in three habitats: (1) continuous forest; (2) continuous forest edge, and (3) small, degraded riparian forest patches. We found that seed removal rates were high and almost the same in all three habitats for both tree species, but that the predation/dispersal balance differed among habitats. In continuous forest, more seeds of each species were scatterhoarded than depredated, and rates of scatterhoarding differed between the two species. In all habitats, burying seeds up to 2 cm belowground was more common than caching. Distances seeds were moved was approximately five times greater in continuous forest than in forest edge or riparian patches. We found strong evidence to suggest that the African pouched rat, Cricetomys sp. nov was responsible for the scatterhoarding.  相似文献   

6.
Rodents act as seed predators and dispersers and play an important role in the regeneration of plants. Seed production and rodent abundance may influence caching rodents’ decision to consume or cache seeds. We studied how did seed production and rodent abundance co-influence seed predation and dispersal by rodents in the mast seed years (2011 and 2013) and non-mast seed years (2012 and 2014) in the Qinling Mountains of Shaanxi Province, Central China. We found that: (1) The seed removal rates were much faster in the non-mast seed years than in the mast seed years. (2) Although the total number of seeds consumed (including eaten in situ and after removal) was higher in the non-mast seed years than in the mast seed years, no significant differences were found in the seeds that were eaten in situ and after removal among the 4 years. (3) Significant differences were observed in seeds that were cached among the 4 years, and more seeds were cached in the non-mast seed years than in the mast seed years. (4) The primary and secondary seed dispersal distances (including cached and eaten) were all longer in the non-mast seed years than in the mast seed years. Overall, these results indicate that non-mast seeding with low per capita seed availability could increase both seeds consumption and caching by rodents. Our results are partially supporting the predator satiation hypothesis.  相似文献   

7.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

8.
Bo Wang  Gang Wang  Jin Chen 《Plant Ecology》2012,213(8):1329-1336
Seed predation and dispersal by scatter-hoarding rodents are key processes that determine seed survival, and thus, plant regeneration within forests. For decades, there has been much debate on the important effects of seed size (one of the most important seed traits) on rodent foraging preference. Furthermore, the possible selective forces in the evolution of seed size may be influenced by primary selectivity and how rodents treat seeds after harvesting. In this study, different-sized seeds from four species (Pinus armandii, Pinus densata, Abies sp., and Viburnum sp.) harvested by scatter-hoarding rodents were studied in an alpine forest in Southwestern China for two consecutive years. Our results showed that seed size influenced rodent foraging preferences, with bigger seeds being preferred over smaller seeds, within and across species. Rodents only removed and cached the larger seeds of P. armandii, and ate the seeds of the other three species in situ. Rodents are purely seed predators for these three species. For the cached seeds of P. armandii, significantly positive correlations were observed between seed size and dispersal distance among both primary and secondary cached seeds in 2006, but not in 2005. Our results indicate that among many coexisting species with widely different-sized seeds, scatter-hoarding rodents played important roles in the seed dispersal of the big-seeded species alone. This caching behavior could offset the limited seed dispersal of large-seeded and wingless species (P. armandii), in comparison with that of small winged seed species (P. densata and Abies sp.) and frugivore-dispersed species (Viburnum sp.).  相似文献   

9.
Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.  相似文献   

10.
陈晓宁  张博  陈雅娟  侯祥  王京  常罡 《生态学报》2016,36(5):1303-1311
森林鼠类的种子贮藏行为对植物的扩散及更新会产生积极的影响。2012和2013年秋季,分别在秦岭北坡的周至国家级自然保护区和南坡的佛坪国家级自然保护区内,调查了森林鼠类对板栗(Castanea mollissima)和锐齿栎(Quercus aliena)种子的取食和扩散差异。结果显示:1)秦岭南北坡的环境因素,特别是植被因素,对鼠类扩散板栗和锐齿栎种子具有重要的影响。南坡较为丰富的壳斗科植被种类,导致2种种子在南坡存留时间均长于北坡,而北坡的扩散取食和丢失率均高于南坡。2)种子特征影响鼠类的取食或贮藏偏好。由于较高的蛋白、脂肪等营养含量,鼠类更喜好取食或搬运贮藏板栗种子。然而,低营养但高丹宁含量的锐齿栎种子仍然被鼠类大量贮藏。3)2种种子在南北坡的扩散历程在两个年份间有很大差异,在食物相对匮乏的年份(2012年),种子被扩散的速度更快且丢失的比率更高。这种差异反映了种子大小年现象对森林鼠类取食和贮藏策略的影响。4)无论在秦岭南坡还是北坡,营养价值含量(如蛋白和脂肪)较高的板栗种子的取食和贮藏距离都明显大于营养价值含量较低的锐齿栎种子,这与最优贮藏空间分布模型的预测一致。  相似文献   

11.
张博  石子俊  陈晓宁  侯祥  王京  李金钢  常罡 《生态学报》2016,36(21):6750-6757
种子作为森林鼠类的主要食物来源,它们的扩散和更新很大程度上依赖于鼠类的传播。在鼠类扩散种子的过程中,种子特征和食物相对丰富度是影响鼠类对种子进行何种选择策略的重要因素。2011—2012年的8—12月,采用塑料片标记法在秦岭南坡的佛坪国家级自然保护区内调查了森林鼠类对同域分布的3种壳斗科植物(锐齿槲栎Quercus aliena var.acuteserrata、栓皮栎Q.variabilis和短柄枹栎Q.serrata var.brevipetiolata)种子的扩散差异。结果表明:(1)鼠类倾向于贮藏营养价值较大的栓皮栎种子,并且其贮藏距离也最远(2011:1.52 m,2012:4.03 m),3种种子在食物相对丰富度较低年份被贮藏的距离均较远。(2)在食物相对丰富度较高的年份(2011),种子的消耗速率较慢,在种子释放10 d后种子释放点仍有67.33%的种子,贮藏量较高,至实验结束仍有29.67%的种子被贮藏。在食物相对丰富度较低的年份(2012),种子消耗速率较快,在种子释放后10 d内所有种子均被取食或搬离种子释放点,贮藏量较低,至实验结束仅有3.83%的种子仍被贮藏。(3)虽然栓皮栎种子的贮藏量最大,被贮藏后的存留量也最大,但其在实验地的分布却较小,说明种子扩散仅是植物分布与存活的第一步。以上结果表明,鼠类倾向于贮藏营养价值高的种子。在食物相对丰富度较高的年份会更多的贮藏种子,但种子被贮藏的距离较近,在食物相对丰富度较低的年份会更多的取食种子。  相似文献   

12.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

13.
秦岭森林鼠类对华山松种子捕食及其扩散的影响   总被引:1,自引:0,他引:1  
常罡  王开锋  王智 《生态学报》2012,32(10):3177-3181
森林鼠类的种子贮藏行为对植物的扩散和自然更新有着非常重要的影响。通过塑料片标记法,2008和2009年的9月—11月分别在秦岭南坡的佛坪国家级自然保护区内调查了森林鼠类对华山松(Pinus armandii)种子的捕食和扩散,结果显示:森林鼠类对华山松种子有着非常大的捕食压力。在2008年,几乎所有的种子(96.4%)在第3天后就被全部取食,而在2009年,也有将近一半的种子(49.6%)在第3天后被取食。但与此同时,鼠类对华山松种子的扩散也起着非常重要的作用。尤其在2009年,第3天时鼠类最高分散贮藏了17.75%的种子,而且直到第19天后仍然有12.25%被贮藏的种子存活下来。华山松种子在两个年份间的扩散历程有很大差异。在2008年,几乎所有的种子都被鼠类取食,贮藏量非常小;而在2009年,种子被贮藏的比例显著的增加。这个结果可能与种子大小年现象有着十分紧密的联系。2008年是华山松种子的小年,产量非常低。鼠类为了满足其日常的能量需求,只能大量的取食有限的种子,而减少其贮藏量。而2009年是华山松种子的大年,产量非常高。鼠类在满足其日常能量需求的同时,还有大量剩余的种子供其贮藏。  相似文献   

14.
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.  相似文献   

15.
Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot (Prunus armeniaca), wild peach (Amygdalus davidiana), cultivated walnut (Juglans regia), wild walnut (Juglans mandshurica Maxim) and Liaodong oak (Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel (Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse (Apodemus peninsulae) and Chinese white-bellied rat (Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.  相似文献   

16.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

17.
外果皮厚度和种子大小对五种栎属橡子扩散的影响   总被引:1,自引:0,他引:1  
动物对种子的扩散和贮藏是一个复杂的生态学过程,常常受到种子特征的影响。有关种子特征如何影响动物对种子扩散,许多研究结果并非完全一致。我们于2009 年9 月在黑龙江东方红林场野外和围栏内释放五种栎属橡子(Quercus mongolica,Q.serrata var. brevipetiolata,Q. aliena,Q.variabilisQ. liaotungensis),研究种子特征对鼠类(Apodemus peninsulae, Clethrionomys rufocanus Tamias sibiricus)扩散和埋藏橡子的影响。野外释放结果表明:橡子大小和外果皮厚度显著影响鼠类对橡子的扩散和埋藏。鼠类偏向扩散和埋藏种皮厚的大橡子,种皮薄的小橡子则多被原地取食。种皮厚的大橡子扩散距离显著高于种皮薄的小橡子。然而,只有外果皮的厚度显著影响围栏内花鼠对橡子的扩散和埋藏,橡子大小并非主要的影响因素。种子特征影响种子扩散的效应可能在种群和群落水平上存在差异。  相似文献   

18.
Scatter-hoarding rodents such as tree squirrels selectively cache seeds for subsequent use in widely-spaced caches placed below the ground surface. This behavior has important implications for seed dispersal, seedling establishment, and tree regeneration. Hoarders manage these caches by recovering and eating some seeds, and moving and re-caching others. This process of re-caching, however, is poorly understood. Here, we use radio-telemetry to evaluate re-caching behavior for the management of acorn caches by rodents in eastern deciduous forests. We also test the hypothesis that as seeds are re-cached, the distance from the source increases. Radio transmitters were implanted in Northern red oak (Quercus rubra) acorns and presented to rodents in a natural setting over 3 seasons. We used radio-telemetry to track and document evidence of recovery and re-caching. We tracked a total of 102 acorns. Of the 39 radio-tagged acorns initially cached, 19 (49%) were cached on two or more occasions; one acorn was cached four times. The hypothesis that rodents move seeds to progressively greater distances from the source is not well-supported, suggesting that acorns are being moved within an individual's home range. Given the species of rodents in the study area, gray squirrels (Sciurus carolinensis) are the most likely to be responsible for the caching and re-caching events. Gray squirrels appear to engage in extensive re-caching during periods of long-term food storage, which has important implications for understanding how caching behavior influences acorn dispersal and oak regeneration.  相似文献   

19.
Scatter-hoarding animals are crucial in seed dispersal of nut-bearing plants. We used the holm oak Quercus ilex—wood mouse Apodemus sylvaticus mutualism as a model system to evaluate the relative importance of seed size and fat content on scatter-hoarders’ foraging decisions influencing oak dispersal and potential recruitment. We performed a field experiment in which we offered holm oak acorns with contrasting seed size (2 vs 5 g) and fat content (3 vs 11%). Moreover, to test if the strength of these seed trait effects was context-dependent, experimental acorns were placed in small fragments, where natural regeneration is scarce or absent, and forest habitats. In small fragments, rodents had to face increased intraspecific competition for acorns and reduced anti-predator cover during transportation. As a result, they became more selective to ensure rapid acquisition of most valuable food items but, in turn, transported seeds closer to avoid unaffordable predation risks. During harvesting and caching, larger acorns were prioritized and preferentially cached. Fat content only had a minor effect in harvesting preferences. In contrast, in forest sites, where rodent abundance was four times lower and understory cover was well-developed, rodents were not selective but provided enhanced dispersal services to oaks (caching rates were 75% higher). From the plants’ perspective, our results imply that the benefits of producing costly seeds are context-dependent. Seed traits modified harvesting and caching rates only when rodents were forced to forage more efficiently in response to increased intraspecific competition. However, when landscape traits limited cache protection strategies, a more selective foraging behavior by scatter-hoarders did not result in enhanced dispersal services. Overall, our result shows that successful dispersal of acorns depends on how specific traits modulate their value and how landscape properties affect rodents’ ability to safeguard them for later consumption.  相似文献   

20.
In general, it is accepted that gap formation significantly affects the placement of scatter‐hoarded seeds by small rodents, but the effects of different forest gap sizes on the seed‐eating and scatter‐hoarding behaviors of small rodents remain unclear. Thus, we examined the effects of a closed‐canopy forest, forest edge, and gaps with different sizes on the spatial dispersal of Quercus variabilis acorns and cache placement by small rodents using coded plastic tags in the Taihang Mountains, China. The seeds were removed rapidly, and there were significant differences in the seed‐eating and caching strategies between the stand types. We found that Q. variabilis acorns were usually eaten after being removed from the closed‐canopy forest and forest edges. By contrast, the Q. variabilis acorns in the forest gap stands were more likely to be scatter‐hoarded. The dispersal distances of Q. variabilis acorns were significantly longer in the forest gap plots compared with the closed canopy and forest edge plots. However, the proportion of scatter‐hoarded seeds did not increase significantly as the gap size increased. In small‐scale oak reforestation projects or research, creating small gaps to promote rodent‐mediated seed dispersal may effectively accelerate forest recovery and successional processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号