首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although induced defenses are widespread in nature, and a potentially important strategy used by invasive plants, it is unclear how induced defenses vary among populations and whether the intensity and duration of induced defenses depends on herbivore type. For invasive plants, low herbivore loads in their introduced ranges can lead to differences in herbivore defense compared to their native ranges, but we currently know little about how induced defenses vary among native and invasive populations. We conducted a greenhouse experiment to examine variation in one type of induced defense, extrafloral nectar (EFN) production, among native and invasive populations of Chinese tallow tree, Triadica sebifera. We experimentally manipulated herbivory from an exotic generalist scale insect, a native generalist caterpillar, both herbivores, or neither and then examined EFN production by Triadica. Damage from leaf-chewing caterpillars resulted in strongly induced EFN in both native and invasive populations while damage from phloem-feeding scales did not. Extrafloral nectar production and dissolved solute content peaked 4 days after caterpillar herbivory for both native and invasive populations. Number and proportion of leaves producing EFN, EFN volume and concentration of dissolved solutes were similar among native and invasive populations. These results suggest that selection for indirect defenses may be different than selection for other defenses in the introduced ranges of invasive plants, as constitutive and induced EFN production is retained in invasive populations.  相似文献   

2.

Background and Aims

Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage.

Methods

Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production.

Key results

Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations.

Conclusions

These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants.  相似文献   

3.
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。  相似文献   

4.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

5.
The evolution of increased competitive ability (EICA) hypothesis provides a compelling explanation for the success of invasive species. It contends that because alien plants have escaped their coevolved natural enemies, selection pressures favor a diversion of resources from herbivore defense to traits that confer increased competitive ability. Here, we provide evidence for EICA in the noxious grassland invader Lespedeza cuneata, by comparing the ancestral genotype introduced to North America in 1930 with modern‐day invasive (North American) and native (Japanese) genotypes. We found that the invasive genotype was a better competitor than either the native or the ancestral genotype. Further, the invasive genotype exhibited greater induced resistance but lower constitutive resistance than the ancestral and native genotypes. Our results suggest that selection has played a pivotal role in shaping this invasive plant species into a more aggressive, but less constitutively defended competitor.  相似文献   

6.
Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta‐analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.  相似文献   

7.
The evolution of increased competitive ability (EICA) hypothesis predicts that plants released from natural enemies should evolve to become more invasive through a shift in resource allocation from defense to growth. Resource availability in the environment is widely regarded as a major determinant of defense investment and invasiveness, and thus should be incorporated into the conceptual framework of EICA. Analysis of a simple model from the optimal defense literature demonstrates that, in contrast to the EICA hypothesis, enemy release is neither sufficient nor necessary for evolution of reduced resistance among introduced plants when habitat productivity co-varies. In particular, if the invasive range is more nutrient-poor than the native range, there could be selection for more plant defenses even with enemy release.  相似文献   

8.
The ‘evolution of increased competitive ability’ (EICA) hypothesis is an extension of optimal defense theory and predicts that reduced pressure from insect herbivores in the introduced range results in evolution of reduced defenses in invading plant populations, allowing greater allocation of resources to competitive traits such as growth rate and reproduction. The EICA hypothesis considered levels of defensive chemistry to be fixed within a particular genotype. In this paper, we propose that if herbivory is reduced in the introduced range, but chemical defenses are inducible in response to herbivory, evolution of reduced defenses and any associated increase competitive ability should not occur. Rather, mean induced and constitutive levels of induced defenses should be similar in introduced and native ranges, but the variance about mean induced levels should be greater in the introduced range. This is predicted because induced levels will occur less frequently in the introduced range where herbivory is reduced, thereby insulating these levels from the stabilizing selection expected in the native range where induced levels occur more frequently. We conducted a preliminary study to examine this by comparing constitutive and induced concentrations of total pyrrolizidine alkaloids (PAs) from native (European) and introduced (western North America) populations of Cynoglossum officinale L. The mean constitutive and induced concentrations of PAs did not differ between continents, but the variability of the induced concentrations was significantly greater for plants from the introduced range. Although our study with C. officinale is provisional due to a small sample size, it supports our predictions for evolution of inducible defenses in introduced ranges where herbivore pressure is reduced. Most chemical defenses in plants have been found to be inducible, so similar patterns may occur widely. If so, this weakens the generality of EICA’s predictions concerning chemical defenses. The effects of inducible defenses should be considered in cross-continent comparisons of other invasive plant species.  相似文献   

9.
Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade‐off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis.  相似文献   

10.
The evolution of increased competitive ability (EICA) hypothesis proposes that invasive species evolve decreased defense and increased competitive ability following natural enemy release. Previous studies have found evidence both for and against EICA. The resource-enemy release hypothesis (R-ERH) suggests that fast-growing species may experience stronger enemy release than slow-growing species. On the basis of R-ERH, the prediction of EICA will be held true for slow-growing genotypes, i.e., the slow-growing genotypes from the introduced range will be less resistant to herbivory and grow faster than those from the home range; while the EICA will not be held for fast-growing genotypes, i.e., there will be no significant differences in growth and defense traits between the introduced and native fast-growing genotypes. We tested these predictions preliminarily using five populations of the invasive plant Alternanthera philoxeroides. This species has two varieties in its home range, which showed a distinct growth-defense strategy: the northern A. p. var. acutifolia (Apa) had higher growth rate but lower resistance, while the southern A. p. var. obtusifolia (Apo) had lower growth rate but higher resistance level. Our results suggest that the EICA hypothesis is consistent with the slow-growing Apo, but not with the fast-growing Apa. We suggest that evolutionary changes in growth or resistance following enemy release are influenced by variation in growth rate within an invasive alien plant. These findings have important implications for the EICA hypothesis, and may partially explain why previous studies have found evidence both for and against EICA.  相似文献   

11.
The ‘evolution of increased competitive ability’ (EICA) hypothesis states that reduced herbivory in the introduced range causes an evolutionary shift in resource allocation from herbivore defense to growth. Therefore, according to EICA, introduced genotypes are expected to grow more vigorously than conspecific native genotypes when cultivated under common standardized conditions. The EICA hypothesis also assumes that herbivores will perform better on introduced genotypes compared to native genotypes, because they are less well defended. However, selection for either defense or growth will depend on the type of defense (quantitative or qualitative) employed by the plant, and whether the plant is released from generalist or specialist herbivores. The predictions of the EICA hypothesis might be reversed if a plant experiences increased generalist herbivore pressure in the introduced range, and therefore invests more in qualitative defense. We examined this idea with the invasive perennial mustard, Lepidium draba. We grew a total of 16 populations of L. draba from both its native European and introduced western US ranges under common conditions in a greenhouse. We also tested for differences in plant resistance to the specialist herbivore, Psylliodes wrasei, by conducting a leaf disc feeding bioassay with native and introduced L. draba genotypes. Furthermore, we quantified the generalist herbivore load on L. draba in both ranges in order to assess the selection pressure for increased qualitative defense. Contrary to the original EICA prediction, all plant traits (biomass, number of shoots, length and diameter of longest leaf) tended to be greater for the native, rather than introduced L. draba genotypes. There was no significant difference in the proportion of leaf area consumed by the specialist herbivore between native and introduced genotypes. The generalist herbivore load on L. draba was significantly greater in the introduced range. Our data suggest that the EICA hypothesis does not explain the invasion success of L. draba in the US. Instead, we propose that the reduced vigor of introduced genotypes may be due to selection for increased defense against generalist herbivores in the introduced range.  相似文献   

12.
The EICA‐hypothesis predicts that invading plants adapt to their novel environment by evolving increased performance and reduced resistance in response to the release from natural enemies, and assumes a resource allocation tradeoff among both trait groups as mechanistic basis of this evolutionary change. Using the plant Silene latifolia as a study system, we tested these predictions by investigating whether 1) invasive populations evolved lower resistance and higher performance, 2) this evolutionary change is indeed adaptive, and 3) there is a negative genetic correlation between performance and resistance (i.e. a tradeoff) in native and introduced individuals. Moreover, we sampled eight native and eight invasive populations and determined their population co‐ancestry based on neutral SSR‐markers. We performed controlled crossings to produce five sib‐groups per population and exposed them to increased and reduced levels of enemy attack in a full‐factorial experiment to estimate performance and resistance. With these data, we performed trait‐by‐trait comparisons between ranges with ‘animal models’ that account for population co‐ancestry to quantify the amount of variance in traits explained by non‐adaptive versus adaptive evolution. Moreover, we tested for genetic correlations among performance and resistance traits within sib‐groups. We found significant reductions in resistance and increases in performance in invasive versus native populations, which could largely be attributed to adaptive evolution. While we detected a non‐significant trend towards negative genetic performance × resistance correlations in native populations, invasive populations exhibited both significant and non‐significant positive correlations. In summary, these results do not support a shift of performance and resistance trait values along a tradeoff line in response to enemy release, as predicted by EICA. They rather suggest that the independent evolution of both traits is not constrained by a tradeoff, and that various selective agents (including resource availability) interact in shaping both traits and in weakening negative genetic correlations in the invaded habitat.  相似文献   

13.
Hornoy B  Tarayre M  Hervé M  Gigord L  Atlan A 《PloS one》2011,6(10):e26275
Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species.  相似文献   

14.
  1. The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.
  2. In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.
  3. Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.
  4. When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.
  5. Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
  相似文献   

15.
Abstract Plant invasions create novel plant–insect interactions. The EICA (evolution of increased competitive ability) hypothesis proposes that invasive plants will reallocate resources from defense to growth and/or reproduction because they have escaped from their co‐evolved insect natural enemies. Testing multiple herbivory by monophagous and oligophagous herbivores and simultaneous measurement of various plant traits will provide new insights into the evolutionary change of invasive plants. In this context, we conducted a common garden experiment to compare plant growth and reproduction, chemical and physical defense, and plant responses to herbivory by different types of herbivores between invasive North American populations and native East Asian populations of mile‐a‐minute weed, Persicaria perfoliata. We found that invasive mile‐a‐minute exhibited lower biomass, flowered earlier and had greater reproductive output than plants from the native range. Compared with native populations, plants from invasive populations had lower tannin content, but exhibited higher prickle density on nodes and leaves. Thus our results partially support the EICA hypothesis. When exposed to the monophagous insect, Rhinoncomimus latipes and the oligophagous insects, Gallerucida grisescens and Smaragdina nigrifrons, more damage by herbivory was found on invasive plants than on natives. R. latipes, G. grisescens and S. nigrifrons had strong, moderate and weak impacts on the growth and reproduction of mile‐a‐minute, respectively. The results indicate that mile‐a‐minute may have evolved a higher reproductive capacity in the introduced range, and this along with a lack of oligophagous and monophagous herbivores in the new range may have contributed to its invasiveness in North America.  相似文献   

16.
Post-introduction evolution of increased growth or reproduction has been observed in many species of invasive plants; however, it is not consistently associated with a loss of defense, as predicted by the influential evolution of increased competitive ability (EICA) hypothesis. Inconsistent support for the EICA hypothesis likely reflects the fact that, although invasive plants are released from attack by some enemies, typically specialists, they often do not escape attack from generalists. Thus, different types of defense (e.g., structural versus chemical) may evolve in different directions following introduction. We used a common garden experiment to test whether a shift in allocation among defenses (as opposed to a simple increase or decrease in a single defense) is associated with increased growth in introduced Verbascum thapsus populations. Introduced populations had significantly greater shoot biomass than natives. However, root biomass was similar between ranges, and highly variable, resulting in only marginal differences in total biomass. Mean investment in all three defenses was remarkably similar between the native and introduced populations, providing no evidence for range-level, post-introduction evolution of defense. This finding was consistent with the fact that, despite significant population-level variability for all defenses, there was little evidence of trade-offs between growth and defense or among different types of defense. These results suggest that evolution of increased growth in V. thapsus is not fueled by decreased allocation to defense, and that selection on defense may vary more at the population scale than the continental scale.  相似文献   

17.
The evolution of increased competitive ability hypothesis (EICA) predicts that when alien plants are free from their natural enemies they evolve lower allocation to defense in order to achieve a higher growth rate. If this hypothesis is true, the converse implication would be that the defense against herbivory could be restored if a natural enemy also becomes present in the introduced range. We tested this scenario in the case of Ambrosia artemisiifolia (common ragweed) – a species that invaded Japan from North America. We collected seeds from five North American populations, three populations in enemy free areas of Japan and four populations in Japan where the specialist herbivore Ophraella communa naturalized recently. Using plants grown in a common garden in Japan, we compared performance of O. communa with a bioassay experiment. Consistent with the EICA hypothesis, invasive Japanese populations of A. artemisiifolia exhibited a weakened defense against the specialist herbivores and higher growth rate than native populations. Conversely, in locations where the herbivore O. communa appeared during the past decade, populations of A. artemisiifolia exhibited stronger defensive capabilities. These results strengthen the case for EICA and suggest that defense levels of alien populations can be recuperated rapidly after the native specialist becomes present in the introduced range. Our study implies that the plant defense is evolutionary labile depending on plant-herbivore interactions.  相似文献   

18.
If invasive plants are released from natural enemies in their introduced range, they may evolve decreased allocation to defense and increased growth, as predicted by the evolution of increased competitive ability (EICA) hypothesis. A field experiment using the invasive tree Melaleuca quinquenervia was conducted to test this hypothesis. Seeds were collected from 120 maternal trees: 60 in Florida (introduced range) and 60 in Australia (home range). Plants grown from these seeds were either subjected to herbivory by two insects from Australia that have recently been released as biological control agents or protected from herbivores using insecticides. Genotypes from the introduced range were initially more attractive to herbivores than genotypes from the home range, supporting EICA. However, genotypes from the introduced and home range did not differ in resistance to insects or in competitive ability, which does not support EICA. Plants from the introduced range had a lower leaf hair density, lower leaf: stem mass ratio, and a higher ratio of nerolidol: viridifloral chemotypes compared to plants from the native range. Plants with an intermediate density of leaf hairs and with high specific leaf area were more susceptible to herbivory damage, but there were no effects of leaf toughness or chemotype on presence of and damage by insects. Herbivory had a negative impact on performance of Melaleuca. Other than an initial preference by insects for introduced genotypes, there was no evidence for the evolution of decreased defense or increased competitive ability, as predicted by the EICA hypothesis. It does not appear from this study that the EICA hypothesis explains patterns of recent trait evolution in Melaleuca.  相似文献   

19.
The successful spread of invasive plants may result from an evolutionary shift in resource allocation from defence to growth due to release from enemies, as proposed by the ‘evolution of increased competitive ability’ hypothesis (EICA). The crucifer Lepidium draba was used to test this hypothesis, measuring growth and levels of glucosinolates and myrosinase of leaves as constitutive defence parameters. Individuals from 21 populations of the native (Europe) and the invasive range (North-America) were grown under common greenhouse conditions. According to the EICA hypothesis it was predicted that plants from the invasive range might show stronger growth and have lower levels of defence as a result of selection favouring such genotypes. There was significant variation between populations in shoot, root, total biomass, and number of ramets of 3-month-old plants but no difference due to origin from both continents. The main glucosinolate p-hydroxybenzyl glucosinolate was significantly higher in seedlings of the invasive range while myrosinase activity was higher in old plants of the invasive range. Therefore, the EICA hypothesis does not hold, however, alternatively there is evidence for selection favouring stronger defence in the invasive range. The binary defence system of this crucifer is discussed with respect to the degree of specialisation of potential herbivores.  相似文献   

20.
Reduced competitive ability in an invasive plant   总被引:10,自引:2,他引:8  
One explanation for successful plant invaders is that they evolved to be more competitive. An intuitive prediction of this Evolution of Increased Competitive Ability (EICA) hypothesis never previously tested is that invasive populations should outcompete their native ‘ancestors’ in a common environment. We tested this idea in a diallel competition experiment with Alliaria petiolata where offspring from native and invasive populations were grown alone or in all pairwise combinations. While without competition, there were no differences between native and invasive populations, native populations outperformed invasive ones when competing against each other. Our results contradict the EICA hypothesis and we conclude that it does not not hold for Alliaria petiolata. Instead, we formulate a new ERCA (Evolutionary Reduced Competitive Ability) hypothesis: if there is less competition in the invasive range and competitive ability involves traits that have a fitness cost, then selection might act against it, thereby reducing intraspecific interactions too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号