首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Periploca sepium Bunge is a native and widespread shrub on the Loess Plateau, an arid and semi-arid region in China. To understand the adaptability of its seed germination to dry environments, we investigated the germination rate, water relations, lipid peroxidation, antioxidant capacity and accumulation of major organic solutes during seed germination under water deficit conditions. Results showed that seeds pre-treated by hydration–dehydration or ?0.9 MPa PEG germinated faster than control seeds, indicating strong resistance of P. sepium to drought condition. The re-dried seeds showed higher proline, total free amino acids (TFAA) and soluble proteins (SP) contents than control dry seeds, indicating the maintenance of physiological advancement when dehydrated. Osmotic stress made seed germination stay on the plateau phase (phase II). However, germinating seeds moved into phase III immediately once transferred into distilled water. Large increases in SP and soluble sugars (SS) of both re-dried and osmotic stressed seeds help themselves to resist drought stress. The re-hydrated seeds showed significantly higher levels of proline, TFAA, SP and SS than control seeds. The largely accumulated SS during osmotic stress declined sharply when transferred into distilled water. Our data demonstrate that P. sepium’s tolerance to drought stresses during germination is associated with enhanced activity of antioxidant enzymes and accumulation of some compatible solutes. Seed physiological advancement progressed slowly under low water conditions and it was maintained when seeds were air dried. This strategy ensures high and more rapid seed germination of P. sepium under drying and wetting conditions in drought-prone regions.  相似文献   

2.
Few plants are habitat-indifferent halophytes (i.e., grow well in both saline and non-saline soils). These plants offer a good opportunity to study drought and salinity tolerances during germination for seeds developed and matured in soils differ in salinity. Here, we assessed drought tolerance during germination, as simulated with PEG, and response of germination to light and temperature for Suaeda vermiculata, a habitat-indifferent shrub. Seeds matured in saline and non-saline soils were germinated in six PEG concentrations (0 to ? 1.0 MPa) and put in three incubators adjusted at different temperatures in both light and dark regimes. Drought tolerance was greater for seeds of the non-saline than those of saline soils, especially at higher temperatures. Seeds of the saline soils germinated in the lowest osmotic potentials (? 0.8 and ??1.0 MPa) only at lower temperatures, but seeds of the non-saline soils germinated to higher levels at all temperatures. Tolerances to drought and high temperatures were greater in light for seeds of saline soils, but in darkness for seeds of non-saline soils. Germination rate index did not differ significantly between seeds of the two soil types in higher osmotic potentials, but was significantly greater in seeds of non-saline at lower osmotic potentials. Most seeds that failed to germinate in the PEG concentrations recovered their germination when transferred to distilled water. Germination recovery levels and speeds increased with the decrease in osmotic potentials. Seeds of the saline soil postpone their germination until arrival of suitable temperatures and effective rainfalls that ensure seedling survival in salty habitats of the arid unpredictable deserts.  相似文献   

3.

Background and Aims

Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate.

Methods

Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time.

Key Results

Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased.

Conclusions

The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils.  相似文献   

4.
Marathrum schiedeanum and Marathrum rubrum are annual Podostemaceae, thus their seeds are important to their dispersal and persistence in their habitat. We assessed the effect on germination of (1) light (white, red and far red) and darkness, (2) temperature (15, 20, 25, 30 °C and alternating 20/30 °C), (3) osmotic potential (0 to −0.8 MPa), (4) proximity to moisture sources and (5) seed storage. Seeds of M. schiedeanum and M. rubrum were non-dormant and had a high germination capacity (96%). Seeds were positive photoblastic; at 15 °C germination drop to zero, and germination rate was slower at 20 °C and at 20/30 °C than at 25 °C. A small proportion of seeds of both species germinated even at osmotic potentials as low as −0.6 MPa (11%) for M. rubrum and −0.8 MPa (70%) for M. schiedeanum. Seeds germinated only when near to the source of moisture (91.3–87.1% and 53.3–35.6% for M. schiedeanum and M. rubrum, respectively) and 2 years in dry storage did not modify their capacity to germinate. At the beginning of the rainy season, light and temperature in the rivers may be high enough for germination. The ability to germinate at low osmotic potential may be related to early germination during the rainy season. This may be because the seed mucilage assists in diffusion of water from the substrate to the seed. Both species germinated faster at −0.06 MPa, than in distilled water, which may indicate appropriate conditions for germination of these short-lived species.  相似文献   

5.
To test the role of the seed mucilage of Plantago minuta Pall. in regulating germination under osmotic stress and cycles of hydration and dehydration, two experiments were carried out using seeds with intact mucilage and mucilage‐free seeds. In Experiment 1 seeds were immersed in a range of iso‐osmotic polyethylene glycol solutions (?1.15 to 0 MPa) for 14 days; any ungerminated seeds were transferred to deionized water to investigate the recovery germination. In Experiment 2 seeds were immersed in deionized water for 24 h, and were then incubated on filter paper for an additional 13 days to ensure complete desiccation before reimbibition to test the germination recovery percentage. Under mild osmotic stress (?0.73 to 0 MPa), the intact seeds with mucilage were shown to have higher germination rates than the mucilage‐free seeds, indicating that the mucilage led to a “fast sprouting” germination strategy under mild osmotic stress. However, when seeds were exposed to high osmotic stress (?1.15 MPa), the mucilage apparently slowed the germination rate, resulting in a “risk‐balancing” germination strategy. Extreme drought induced by polyethylene glycol solution and the desiccation pretreatment accelerated germination rates compared to non‐pretreated seeds; both germination potential and recovery percentage of the mucilage seeds were significantly higher than that of the mucilage‐free seeds. Our results revealed that the seed mucilage of P. minuta plays a crucial role in regulating seed germination rates and the germination strategies adopted by controlling seed water absorption when the seeds experience different osmotic stresses or alternating wet and dry conditions.  相似文献   

6.
The spatial and temporal fluctuations of water availability can be an obstacle for recruitment of many species in the restinga and might restrict seed germination and seedling growth in specific regeneration safe-sites. Clusia hilariana is one of the most dominant species of Restinga de Jurubatiba. This species has a high proportion of seedling establishment occurring inside the tanks of soil bromeliads underneath vegetation patches. Given the thin seed coats, the fast germination time and seed dispersal of C. hilariana during the dry season, we hypothesized that their major regeneration niche (the tanks of soil bromeliads) is related to susceptibility of seed germination and also seedling growth to low water availability. To test this hypothesis, seeds were germinated under decreasing water potentials using PEG 6000 solutions and seedlings were grown under varying water regimes. The percentage of seed germination progressively decreased at lower water potentials. After 38 days in ?1.0 MPa no seeds germinated. However, approximately 90% of seeds germinated when transferred to Ψ = 0 MPa. The relative growth rates of seedlings of C. hilariana did not differ between water treatments. Thus, the major regeneration niche of C. hilariana is not a consequence of a high sensitivity of seeds and seedlings to water shortage. Nonetheless, C. hilariana showed an array of seed and seedling traits that may help to overcome establishment constraints of the harsh environment of restingas.  相似文献   

7.
Cactus seeds on the soil surface in the desert are subjected to periods of drought that last for up to a few months, and thus they are typically under discontinuous hydration (or discontinuous dehydration). Apparently, they can tolerate long periods of dehydration after single or multiple hydration events and subsequently germinate in accordance with the previous hydration experience. This was verified in three cactus species from the Sonoran Desert. Seeds of Stenocereus thurberi hydrated for 72 or 80 h followed by a dehydration period lasting for 4, 14, 70, 120 or 181 d germinated 2–3 d earlier and had 1.4–2 times shorter mean germination time (MGT) than untreated seeds. Seeds given shorter hydration periods also began to germinate sooner than the controls. MGT was shorter only when the hydration period was 48 h or longer. Final germination percentages were not affected by these treatments, only the MGT. Except for differences in germination percentages, similar results were found for Pachycereus pecten-aboriginum and Ferocactus peninsulae. When the cycle of 24 h hydration followed by 4 d dehydration was repeated one or two times, the effect was cumulative: MGT was equal to 48 and 72 h hydration, respectively. These results suggest a phenomenon of “seed hydration memory,” the ability of seeds to retain during dehydration periods those physiological changes that result from seed hydration. Thus, treated seeds subsequently germinated earlier then untreated seeds, regardless of the duration of dehydration period. This led to a greater biomass accumulation and thus to higher survival in seedlings from treated than from untreated seeds.  相似文献   

8.
The research focused on the changes of phenolic compounds as well as their antiradical activity and reducing power isolated from Amur grape (Vitis amurensis) seeds during germination under optimal conditions and under osmotic stress. The seeds were found to contain tannins, (+) catechin, (−) epicatechin, and gallic acid (in free, ester- and glycoside-bound forms). Extracts from the seeds were also shown to contain two other phenolic acids: caffeic and p-coumaric acids, in very low levels. During a 3-day seed germination test under osmotic stress (−0.5 MPa), the content of total phenolics, tannins and phenolic acids declined as compared to the control. However, seed germination under stress conditions led to a significant increase in the amount of catechins. Because catechin is the one of the units in condensed tannins, its dynamic increase during seed germination may be involved in metabolism of tannins under osmotic stress. It is also likely that the synthesis of catechins is greater under stress conditions and these compounds may be engaged in the process of acclimatization of grapevines to stress conditions. The content of total phenolic compounds in seed extracts is positively correlated with their antioxidant properties. The extracts from seeds germinated under optimal conditions exhibited strong antiradical properties against the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical as well as reducing power. As regards the extracts from grape seeds germinated under osmotic stress, this capability was much weaker. The research demonstrated that antioxidants could interfere with the oxidation process induced by various stresses by acting as oxygen scavengers, therefore the tolerance to drought stress might be correlated with an increase in the antioxidant potential.  相似文献   

9.
Germination of Archontophoenix alexandrae seeds and embryos were studied under gradient water content treatments throughout the seed development phases of maturation in 2005 to investigate seed desiccation tolerance and storage characteristics. During the maturation process, seed water content decreased gradually from55 DAF (days after flowering) to 70 DAF, and seeds reached the maximum dry-weight at 90 DAF. Seed germinability appeared after 60 DAF. Seeds germinated with a temperature range from15℃- 40℃ under alternating photoperiod (14 h light, 10 h dark, 12μmol m- 2s - 1 ), while the best germination percentage was obtained between 30℃- 35℃. A maximum germination capacity reached at 70 DAF. However, seed germination was greatly inhibited by light. Desiccation tolerance of seeds and embryos increasedgradually from 55 DAF to 90 DAF and reached the maximum at 90 DAF with a semilethal water content of 0.18 g/g ( seed) and 0.3 g/g ( embryo) respectively. Rapid dehydration maintained higher seed germination percentage than thatof slow dehydration when drying to the same water content. Seeds with without water content treatments failed to germinate after 1 month storage under - 18℃, whereas appropriate desiccation treatment prolonged seed longevity under 4℃, 10℃ and 15℃ storage temperatures. It revealed obviously the recalcitrant characteristics of Archontophoenix alexandrae seeds torage behaviour which are tolerant toward neither deep desiccation nor low temperatures.  相似文献   

10.

Background and Aims

Diptychocarpus strictus is an annual ephemeral in the cold desert of northwest China that produces heteromorphic fruits and seeds. The primary aims of this study were to characterize the morphology and anatomy of fruits and seeds of this species and compare the role of fruit and seed hetermorphism in dispersal and germination.

Methods

Shape, size, mass and dispersal of siliques and seeds and the thickness of the mucilage layer on seeds were measured, and the anatomy of siliques and seeds, the role of seed mucilage in water absorption/dehydration, germination and adherence of seeds to soil particles, the role of pericarp of lower siliques in seed dormancy and seed after-ripening and germination phenology were studied using standard procedures.

Key Results

Plants produce dehiscent upper siliques with a thin pericarp containing seeds with large wings and a thick mucilage layer and indehiscent lower siliques with a thick pericarp containing nearly wingless seeds with a thin mucilage layer. The dispersal ability of seeds from the upper siliques was much greater than that of intact lower siliques. Mucilage increased the amount of water absorbed by seeds and decreased the rate of dehydration. Seeds with a thick mucilage layer adhered to soil particles much better than those with a thin mucilage layer or those from which mucilage had been removed. Fresh seeds were physiologically dormant and after-ripened during summer. Non-dormant seeds germinated to high percentages in light and in darkness. Germination of seeds from upper siliques is delayed until spring primarily by drought in summer and autumn, whereas the thick, indehiscent pericarp prevents germination for >1 year of seeds retained in lower siliques.

Conclusions

The life cycle of D. strictus is morphologically and physiologically adapted to the cold desert environment in time and space via a combination of characters associated with fruit and seed heteromorphism.  相似文献   

11.
Dehydration tolerance in spring wheat seeds   总被引:2,自引:0,他引:2  
Studies performed on seeds of several cultivars of spring wheat (Triticum aestivum L. var.lutescens) revealed differences in the studied seed dehydration tolerance affecting seed germination and seedling emergence. Among the cultivars studied, seeds of Kolibri showed capability to maintain both high germination energy and high emergence rate at diminished water potential of the environment. Seed dehydration tolerance was increased when the parent plants were subjected to drought. This work was supported by Project No. 9.1.1. coordinated by the Plant Breeding and Acclimatization Institute.  相似文献   

12.
Factors affecting the within-lake distribution of Trapa japonica were analysed in Lake Mikata, Japan, by integrating remote sensing analyses, field surveys, and laboratory experiments. The T. japonica bed has been expanding since 2006 and covered more than 60 % of the lake’s area from 2008 to 2010. However, two parts of the lake, the upper and lower areas, retained open water, even during recent years. A survey of lake-bottom sediments revealed a heterogeneous seed distribution. Although seed density exceeded 13 seeds/m2 in the lake’s central area, no seeds were observed in the upper and lower areas. A seed-bag retrieval experiment showed that 75.6 % of seeds at the upper site germinated when seeds were artificially introduced, whereas 6.7 % of seeds germinated at the lower site. These results suggest that seed dispersal opportunities are the primary limitation on the distribution of T. japonica in the upper area. Brackish water was found in springs in the lower area, reflecting an adverse inflow of water from a downstream brackish lake. Laboratory experiments revealed significant adverse effects of water salinity on germination and early growth of T. japonica. Based on these results, we concluded that the heterogeneous distribution of T. japonica within the lake was determined by a combination of two factors: limitations on seed dispersal determined by the inflowing river and harmful salinity levels caused by inflows of seawater from the Sea of Japan via a downstream brackish lake.  相似文献   

13.
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.  相似文献   

14.
In vitro asymbiotic seed germination of Dendrobium nobile varied significantly with fruit harvesting time and growth medium used for culturing seeds. Seeds harvested 129 days after pollination (DAP) possessing globular shaped embryos and a discontinuous cuticle layer showed a substantially greater germination on P668 medium. Alternatively, immature seeds harvested 96 and 116 DAP displayed a significantly lower germination response on various growth media. Most of the ovules at 96 DAP are in archesporial and megaspore mother cell stages, whereas the majority of ovules are mature and fertilized at 116 DAP. Mature seeds harvested 158 DAP also germinated at a higher frequency at Stage 5 (emergence of the first leaf) after 8 weeks of culture on different growth media indicating the absence of testa imposed dormancy in this endangered epiphytic orchid.  相似文献   

15.
  • Biotic and abiotic interactions are important factors that explain community assembly. For example, epiphytic communities are shaped by tree traits that can act as environmental filters, but also by positive and/or negative interactions among coexisting epiphytes on a tree.
  • Here, we studied interactions among three widespread atmospheric bromeliads with overlapping niches (Tillandsia recurvata, T. tricholepis and T. pohliana), using experimental data about facilitation through seed capture, interspecific interaction during seed germination and competition among adult individuals. We aim to understand how species interactions are reflected in the natural coexisting patterns of epiphytes in communities at high and low tree densities.
  • Tillandsia pohliana showed higher facilitation by capturing almost all wind‐dispersing seeds, and had the largest reduction in seed germination in the presence of any adult individual, also presenting a relatively high rate of adult mortality in the presence of other individuals. Our results indicate higher colonisation ability for T. pohliana and distinct strategies of rapid exploitation of T. recurvata and T. tricholepis individuals.
  • In natural communities, the coexistence among atmospheric bromeliads may be hampered by dispersal limitations in wind‐dispersed epiphytes at high tree density conditions, but a negative effect of T. recurvata on T. pohliana is still reflected in their reduced coexistence. However, competitive patterns observed in the experimental data may be overshadowed by a possible mass effect driving large communities under such conditions. Our results show the joint effect of positive interactions and high dispersal levels on the community patterns of atmospheric bromeliads.
  相似文献   

16.
Seed and Seedling Susceptibility to Phased Moisture Stress in Soil   总被引:1,自引:0,他引:1  
Seeds of calabrese and carrot treated with fungicide were sownin soil at three levels of moisture stress causing a range ofeffects on seed germination or seedling emergence. After periodsof up to 3 weeks the soil was either rehydrated directly, orrehydrated after a short period of severe dehydration. Seedand seedling losses appeared to be almost entirely due to seedlingdeath after germination in the conditions of severe dehydration,but even then some germinated seeds survived these conditions.Seed deterioration or death was implicated only in carrot whenseeds were dehydrated after being held for from 1 to 3 weeksin soil at —10 ? 105 Pa. A model for seed moisture effectson deterioration and survival is proposed.  相似文献   

17.
In fragmented landscapes, the sharp transitions between remnant habitats and those created by human disturbances result in “edge effects”. Changes in microhabitat characteristics (for example, the height at which epiphytic plants grow on their host trees) may, however, modulate these effects. We evaluated how distance to the edge and height on the host tree affect seed germination and adult occurrence of the austral-forest epiphyte Sarmienta repens. The negative effect of edges on germination and adult occurrence was modulated by a vertical gradient (height) with contrasting effects on seed germination and survival to adulthood. Seed germination was affected by both height and distance to the forest edge, increasing away from forest edges for plants growing on trees in mid-story (3–6 m) and canopy zones (6–12 m) but being unaffected by the distance to the edge for plants located in understory zones (<3 m above the ground). Adult occurrence, in contrast, increased with both height and distance to the edge. As a result, seeds deposited near edges germinated best at a microhabitat (understory zone) inadequate for subsequent survival. Our results stress the importance of maintaining intact forest areas, free from edge influences and hosting large trees, to preserve the rich epiphytic flora characteristic of humid forests.  相似文献   

18.
利用控制实验研究了水分、盐分生态因子对沙地云杉和青海云杉种子萌发和幼苗生长的影响,以探索沙地云杉和青海云杉种子对水分、盐分生态因子的适应性。结果表明:(1)水分胁迫和盐分胁迫对沙地云杉和青海云杉种子萌发具有明显的抑制作用,可显著的降低种子的发芽率,两种云杉种子对水分胁迫的临界值和极限值分别是-0.03、-0.15 MPa和-0.5、-0.58 MPa;对盐分胁迫的临界值和极限值分别是78、148 mmol/L和284、345mmol/L;其幼苗长度随着渗透势和NaCl浓度的增加而显著减小。(2)沙地云杉和青海云杉种子恢复发芽率及恢复后的幼苗长度随着渗透势和NaCl浓度的增加先增加后减少。(3)在相同的水势条件下,PEG溶液比等渗的NaCl溶液对沙地云杉和青海云杉种子萌发具有更大的抑制作用,种子萌发过程中渗透胁迫比离子毒害的抑制作用更大。研究发现,沙地云杉和青海云杉种子对水分和盐分胁迫表现出不同程度的耐受性,两者对盐分胁迫的忍耐能力超过对水分胁迫;而且青海云杉种子比沙地云杉更耐旱、耐盐;早期的低盐和充分的水分条件是沙地云杉和青海云杉存活的关键。  相似文献   

19.
A comparison of different chemicals for osmotic treatment of vegetable seed   总被引:2,自引:0,他引:2  
Samples of carrot, celery, leek and onion seed were treated before sowing by imbibition in osmotic solutions of polyethylene glycol 6000 (PEG), glycerol and potassium dihydrogen orthophosphate (KH2PO4). The solutions were sufficiently concentrated to prevent germination during treatment, and within each species, the amount of water taken up by the seeds during treatment did not vary greatly between solutions. All treatments increased the rates of seed germination and seedling emergence compared to untreated controls, but glycerol-treated seeds germinated and emerged significantly more slowly than did PEG- and KH2PO4-treated seeds. The effects of PEG and glycerol treatments on percentage germination and seedling emergence were small, but KH2PO4 treatment tended to reduce percentage germination and emergence, most markedly in leek and one cultivar of celery. It is concluded that PEG treatment gives the most consistently beneficial effects for the range of species tested.  相似文献   

20.
等渗的盐分和水分胁迫对杠柳种子萌发的影响   总被引:6,自引:3,他引:3  
马闯  张文辉  刘新成 《植物研究》2008,28(4):465-470
通过等渗的NaCl和PEG溶液模拟盐分和水分胁迫,设置渗透梯度,在控制条件下对杠柳种子的萌发过程中总萌发率、幼苗鲜重、胚根生长、种子活力、发芽值等指标系统研究,对种子萌发率与渗透势之间关系进行回归分析,主要结果包括:(1)杠柳种子萌发过程中总萌发率、幼苗鲜重、活力指数和发芽值四项指标均随NaCl和PEG溶液的渗透势降低逐渐下降,综合研究活力指数和发芽值表明渗透势≥-0.5 MPa和≤-1.4 MPa时,PEG对种子萌发抑制作用大于NaCl,其他情况相反;(2)杠柳种子逐日萌发率和胚根日变化研究表明,与NaCl相比,PEG推迟杠柳种子萌发,并且对胚根增长抑制作用较大;(3)建立盐分和水分胁迫条件下种子萌发率与渗透势回归方程,发现杠柳种子在PEG胁迫下的萌发临界值和极限值为-1.0和-1.4 MPa,在NaCl胁迫下是-0.9和-1.3 MPa,解除胁迫条件,不同处理的杠柳种子复水萌发率均达到100%。说明杠柳具有良好的耐盐抗旱的特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号