首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aims Anthropogenic activities have drastically increased nutrient availability, resulting in declines in species richness in many plant communities. However, most previous studies have explored only species-loss patterns and mechanisms over small sampling areas, so their results might overestimate species loss at larger spatial scales. The aim of this research was to explore species diversity change patterns and species-loss rates at multiple scales in alpine meadow communities following nutrient enrichment. Specifically, we asked two closely related questions: (i) do changes in species diversity and species-loss patterns differ among spatial scales? and (ii) how does community compositional dissimilarity and species turnover change among spatial scale?  相似文献   

2.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

3.
Projecting the future composition and function of communities is a major challenge, and there is an urgent need to develop, improve, and test the predictive capacity of ecological models under different climate states. We tested the effect of climate on spatial patterns of plant community composition over the past 21 000 yr, focusing on whether the spatial relationships between environmental distance and compositional dissimilarity are stable over time. We used a network of fossil‐pollen sites in eastern North America, combined with paleoclimate simulations from the Last Glacial Maximum (LGM; 21 000 calibrated years before present, 21 kyr BP) to the present. We modeled relationships between climate, geography, and compositional dissimilarity at 1 kyr periods using generalized dissimilarity modeling (GDM) and determined the strongest predictors of compositional dissimilarity. We assessed the performance of models calibrated for one time period (e.g. 14 kyr BP) in predicting patterns in the same period as well as at other times (e.g. 12 kyr BP), and tested whether predictive performance was related to the magnitude of climate change between the calibration and prediction time periods. Finally, we examined whether pooling data from multiple time periods improved predictive performance. Models explained 32 to 51% of compositional dissimilarity between locations within any single time period. The best set of predictors changed across time, with summer temperature and geographic distance the strongest predictors of compositional dissimilarity for most time periods. Models built for one time period explained turnover during nearby time periods relatively well, but performance decayed across time and with increasing climate change. Results were similar regardless of whether models were projected forward or backward through time, and did not improve when data were pooled across time. GDM predicts well the spatial patterns of past compositional dissimilarity and holds promise for modeling the drivers of compositional dissimilarity across space and time. However, the modeled relationships between compositional turnover and environmental distance are non‐stationary, so caution is needed when predicting across periods of significant climatic change.  相似文献   

4.
1.?Environmental sorting, historical factors and neutral dynamics may all drive beta diversity (change in species composition across space), but their relative importance remains unresolved. In the case of European mammals, key potential drivers of large-scale beta diversity include current climate, neutral dynamics and two historical factors: Pleistocene glaciations and peninsular dynamics (immigration from extra-regional eastern faunal source areas and inter-linked relictual survival and evolutionary differentiation in isolated areas). 2.?We assessed the relative importance of these drivers using a novel analytical framework to deconstruct beta diversity of non-volant mammals in Europe (138 species) into its turnover (change in species composition because of species replacements) and nestedness components (change in species composition because of species richness differences) at continental and regional (250,000 km(2) ) scales. 3.?We found continental-scale mammal beta diversity to be mainly caused by spatial turnover (99·9%), with only a small contribution (0·1%) from nestedness. 4.?Current climate emerged as an important driver of beta diversity, given the strong continental-scale turnover, particularly in north-south direction, i.e., in line with the latitudinal climate gradient, and, more directly, the strong correlation of climate with spatial turnover at both continental and regional scales. 5.?However, there was also evidence for the importance of non-climatic drivers. Notably, the compositional variation purely accounted for by space was greater than that purely accounted for by environment for both the turnover and the nestedness component of beta diversity. Furthermore, the strong longitudinal turnover within Southern Europe is in accordance with the region's long-term climatic stability having allowed multiple refugia and local evolutionary diversification. As expected from peninsular dynamics, there was increasing dissimilarity with geographic distance in an east-west direction because of nestedness, but only in Central and Northern Europe. 6.?In conclusion, European mammal beta diversity mainly reflects spatial turnover and only to a limited extent nestedness and is driven by current climate in combination with historical - and perhaps, neutral - dynamics. These findings suggest that a key challenge for climate-change predictive studies will be taking the influence of non-climatic factors into account.  相似文献   

5.

Aim

Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad‐scale environmental filtering.

Location

The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA).

Taxon

Seed plants—woody taxa (primarily trees).

Methods

We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition.

Results

Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism.

Main conclusions

The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.  相似文献   

6.
Aim We determined whether dissimilarity in species composition between parasite communities depends on geographic distance, environmental dissimilarity or host faunal dissimilarity, for different subsets of parasite species with different levels of host specificity. Location Communities of fleas parasitic on small mammals from 28 different regions of the Palaearctic. Method Dissimilarities in both parasite and host species composition were computed between each pair of regions using the Bray–Curtis index. Geographic distances between regions were also calculated, as were measures of environmental dissimilarity consisting of the pairwise Euclidean distances between regions derived from elevation, vegetation and climatic variables. The 136 flea species included in the dataset were divided into highly host‐specific species (using 1–2 host species per region, on average), moderately host‐specific species (2.2–4 hosts per region) and generalist species (>4 hosts per region). The relative influence of geographic distance, host faunal dissimilarity and environmental dissimilarity on dissimilarity of flea species composition among all regions was analysed for the entire set of flea species as well as for the three above subsets using multiple regressions on distance matrices. Results When including all flea species, dissimilarity in flea species composition was affected by all three independent variables, although the pure effect of dissimilarity in host species composition was the strongest. Results were different when the subsets of fleas differing in host specificity were treated separately. In particular, dissimilarity in species composition of highly host‐specific fleas increased solely with environmental dissimilarity, whereas dissimilarity for both moderately specific and non‐specific fleas increased with both geographic distance and dissimilarity in host species composition. Main conclusions Host specificity seems to dictate which of the three factors considered is most likely to affect the dissimilarity between flea communities. Counter‐intuitively, environmental dissimilarity played a key role in determining dissimilarity in species composition of highly host‐specific fleas, possibly because, although their presence in a region relies on the occurrence of particular host species, their abundance is itself mostly determined by climatic conditions. Our results show that deconstructing communities into subsets of species with different traits can make it easier to uncover the mechanisms shaping geographic patterns of diversity.  相似文献   

7.
Spatial turnover of species lies at the heart of macroecology and conservation biogeography. However, our knowledge of the causes of species turnover remains poor, particularly for herpetofaunas including amphibians and reptiles. Here, using regression, variance partitioning, and hierarchical partitioning analyses, we examine the relationships of species turnover in herpetofaunas among provinces in eastern China with respect to geographic distance and environmental difference. We found that species turnover in herpetofaunas is moderately to strongly correlated with geographic distance and difference in most environmental variables examined between provinces. Geographic distance and environmental difference together explain 87.1 and 89.9% of the variance of species turnover for amphibians and reptiles, respectively. Variance partitioning analysis indicated that most variance in species turnover is explained by the joint effect of geographic distance and environmental difference. Beyond this shared variance, environmental difference is a stronger predictor of species turnover than geographic distance, particularly for reptiles. Hierarchical partitioning analysis showed that energy-related variables explained more variance in species turnover for both amphibians and reptiles, compared with water-related variables. The independent effects of water-related variables are slightly higher for amphibians than for reptiles whereas the independent effects of energy-related variables are slightly higher for reptiles than amphibians. These patterns are consistent with different ecophysiological requirements of the two taxa. Our results have important implications for predicting changes in biodiversity of herpetofaunas under climate change scenarios. Global warming will affect the immigration and local extinction of both amphibians and reptiles, and precipitation change may affect amphibians more strongly, compared with its effect on reptiles.  相似文献   

8.
We explore the influence of spatial grain size, dispersal ability, and geographic distance on the patterns of species dissimilarity of terrestrial vertebrates, separating the dissimilarity explained by species replacement (turnover) from that resulting from richness differences. With data for 905 species of terrestrial vertebrates distributed in the Isthmus of Tehuantepec, classified into five groups according to their taxonomy and dispersal ability, we calculated total dissimilarity and its additive partitioning as two components: dissimilarity derived from turnover and dissimilarity derived from richness differences. These indices were compared using fine (10 x 10 km), intermediate (20 x 20 km) and coarse (40 x 40 km) grain grids, and were tested for any correlations with geographic distance. The results showed that total dissimilarity is high for the terrestrial vertebrates in this region. Total dissimilarity, and dissimilarity due to turnover are correlated with geographic distance, and the patterns are clearer when the grain is fine, which is consistent with the distance-decay pattern of similarity. For all terrestrial vertebrates tested on the Isthmus of Tehuantepec both the dissimilarity derived from turnover and the dissimilarity resulting from richness differences make important contributions to total dissimilarity, and dispersal ability does not seem to influence the dissimilarity patterns. These findings support the idea that conservation efforts in this region require a system of interconnected protected areas that embrace the environmental, climatic and biogeographic heterogeneity of the area.  相似文献   

9.
1. As the climate changes, species are expected to shift to higher latitudes and altitudes where suitable habitat is available if dispersal is not constrained by geographic barriers. We analyse patterns of turnover in freshwater macroinvertebrate assemblages to identify which communities are most likely to be at risk from climate change, and the location of geographic barriers that could impede such adaptive range shifts. 2. We analysed macroinvertebrate data from standard biological assessments at the family level, from surveys of all coastal basins of New South Wales, Australia, covering a latitudinal gradient of more than 1000 km. We used variance partitioning to separate the variation in composition explained by climate, among‐site distance, human disturbance and other stream factors. 3. Montane stream assemblages showed high turnover in response to climatic variation. Turnover in coastal‐fringe streams was least affected by climate, but strongly correlated with distance and stream variables. Significant shifts in assemblage composition occurred between habitats within catchments and across catchment boundaries. 4. Montane stream assemblages are most vulnerable to climate change because their distribution is most responsive to climatic factors, and elevated sites are isolated from one another, reducing the scope for altitudinal migration. Dispersal limitations in coastal‐fringe assemblages will also increase their vulnerability to habitat loss from sea‐level rise. For all stream classes, the separation of many neighbouring catchment assemblages, owing to either limited dispersal or the lack of suitable habitat, is likely to constrain adaptive range shifts. This would lead to an overall reduction in beta diversity among reaches and subsequently to a reduction in landscape‐level gamma diversity.  相似文献   

10.
Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.  相似文献   

11.
12.
Aim Using New Zealand land snails as a case study, we evaluated recent spatial modelling approaches for the analysis of diversity in species‐rich invertebrate groups. Applications and prospects for improved conservation assessment were investigated. Location New Zealand. Methods The study used a spatially extensive and taxonomically comprehensive, plot‐based dataset on community structure in New Zealand land snails. Generalized regression analysis and spatial prediction (GRASP) was used to model and predict species richness as a function of environmental variables (including aspects of climate, soils and vegetation). Generalized dissimilarity modelling (GDM) was used to model turnover in species composition in relation to environmental and geographical distances, and to assess community similarity and the representativeness of the reserve network. Results Observed land snail richness in 20 × 20 m plots ranged from 1 to 74 (mean 17.5). The GRASP model explained a modest 27% of the variation in richness. The GDM model explained 57% of the variation in species turnover and indicated approximately equal amounts related to environmental (Cody’s beta diversity) and geographical distance (Cody’s gamma diversity). Temperature and moisture were the most important environmental variables. Results indicate that snail distributions are not only sorted by environment but are also strongly influenced by historical effects consistent with those expected of poorly dispersing taxa that have persisted in refugia during past climatic change. The GDM model enabled spatial classifications of snail communities, highlighting diverse communities in heterogeneous regions, such as the South Island mountains, and also enabled continuous depictions of community similarity and adequacy of New Zealand’s protected natural areas network. Main conclusions The GRASP and GDM analyses allowed us to model and depict spatial patterns of diversity in land snail communities involving 845 species, and produce community classifications and estimates of community similarity. These tools advance conservation assessment in species‐rich groups, but require further conceptual and methodological development.  相似文献   

13.
Aims Spatial processes and environmental control are the two distinct, yet not mutually exclusive forces of community structuring, but the relative importance of these factors is controversial due to the species-specific dispersal ability, sensitivity towards environmental variables, organism's abundance and the effect of spatial scale. In the present paper, we explored spatial versus environmental control in shaping community composition (i.e. β-diversity) and species turnover (i.e. change of β-diversity) at an alpine meadow along a slope aspect gradient on the Qinghai–Tibetan Plateau at different spatial scales of sampling (quadrats and plots), by taking account of seed dispersal mode and abundance.Methods We examined the relative importance of spatial processes and environmental factors using all species and four additional subsets of selected species. Moreover, we attempted to explore the effect of scale (quadrat refers to scale of ~0.3 m and plot of ~8 m) on their counter balance. The data were analyzed both by variation partitioning and multiple regressions on distance matrices. The spatial structure was modelled using Moran's eigenvector maps (MEM).Important findings Both spatial processes and environmental factors were important determinants of the community composition and species turnover. The community composition in the alpine meadow was controlled by spatially structured environment (17.6%), space independent of environment (18.0%) and a negligible effect of environment independent of space (4.4%) at the scale of quadrats. These three components contributed 21.8, 9.9 and 13.9%, respectively, at the scale of plots. The balance between the forces at different spatial scales drove community structures along the slope aspect gradient. The importance of environmental factors on β-diversity at alpine meadow increased with scale while that of spatial processes decreased or kept steady, depending on dispersal mode and abundance of species comprising the subset. But the 'pure' effect of spatial processes on species turnover increased with scale while that of environmental factors decreased. This discrepancy highlights that β-diversity and species turnover were determined jointly by spatial processes and environmental factors. We also found that the relative roles of these processes vary with spatial scale. These results underline the importance of considering species-specific dispersal ability and abundance of species comprising the communities and the appropriate spatial scale in understanding the mechanisms of community assembly.  相似文献   

14.
Abstract. Australian alpine vegetation is confined to the southeast of the continent and the island of Tasmania. It exhibits strong geographic patterns of floristic variation. These patterns have been attributed to variation in edaphic conditions resulting from geographic variation in substrate, climate and glacial history. This edaphic hypothesis is tested using floristic and environmental data from 166 quadrats distributed throughout the floristic and geographic range of Australian alpine vegetation. Environmental vector fitting in three-dimensional ordination space, the number of significant environmental differences between all pairs of 17 floristic groups and overall statistical analyses of the environmental differences between communities suggest a primacy of climatic variables over edaphic variables in explaining the broad patterns of floristic variation. Continentality, summer warmth, summer rainfall and winter cold all provide a better statistical explanation of floristic variation than the most explanatory of the edaphic variables, extractable P. The environmental variables that best discriminate the groups at each dichotomy of the divisive classification of the floristic data are largely climatic at the upper two levels, with edaphic, topographic and biotic variables being generally more important than climatic variables at the lower levels. Many of the edaphic variables that were most important in discriminating dichotomous groups were relatively insignificant in the broader analyses, suggesting that it is important to partition large data sets for environment/floristic analyses. The results of such partitioning show that the environmental factors most important in influencing floristic variation in alpine vegetation in Australia vary by location and geographic scale.  相似文献   

15.
A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change.  相似文献   

16.
Variation in the spatial structure of communities in terms of species composition (beta diversity) is affected by different ecological processes, such as environmental filtering and dispersal limitation. Large rivers are known as barriers for species dispersal (riverine hypothesis) in tropical regions. However, when organisms are not dispersal limited by geographic barriers, other factors, such as climatic conditions and geographic distance per se, may affect species distribution. In order to investigate the relative contribution of major rivers, climate and geographic distance on Passeriformes beta diversity, we divided Amazonia into 549 grid cells (1° of latitude and longitude) and obtained data of species occurrence, climate and geographic position for each cell. Beta diversity was measured using taxonomic, phylogenetic and functional metrics of composition. The influence of climatic variables, geographic distance and rivers on these metrics was tested using regression analyses. Passerine beta diversity is characterized mainly by the change in species taxonomic identity and in phylogenetic lineages across climatic gradients and over geographic distance. However, species with similar traits are found throughout the entire Amazonia. The size of rivers was proportional to their effect on species composition. However, climate and geographic distance are relatively more important than rivers for Amazonian taxonomic and phylogenetic species composition.  相似文献   

17.
Decreasing similarity between ecological communities with increasing geographic distance (i.e. distance‐decay) is a common biogeographical observation in free‐living communities, and a slightly less common observation for parasite communities. Ecological networks of interacting species may adhere to a similar pattern of decreasing interaction similarity with increasing geographic distance, especially if species interactions are maintained across space. We extend this further, examining if host–parasite networks – independent of host and parasite species identities – become more structurally dissimilar with increasing geographic distance. Utilizing a global database of helminth parasite occurrence records, we find evidence for distance‐decay relationships in host and parasite communities at both regional and global scales, but fail to detect similar relationships in network structural similarity. Host and parasite community similarity were strongly related, and both decayed rapidly with increasing geographic distance, typically resulting in complete dissimilarity after approximately 2500 km. Our failure to detect a decay in network structural similarity suggests the possibility that different host and parasite species are filling the same functional roles in interaction networks, or that variation in network similarity may be better explained by other geographic variables or aspects of host and parasite ecology.  相似文献   

18.
Andrés Baselga 《Ecography》2008,31(2):263-271
This study assessed the diversity patterns of a large family of beetles, Cerambycidae, in Europe and tested the following hypotheses: 1) richness gradients of this hyperdiverse taxon are driven by water and energy variables; 2) endemism is explained by the same factors, but variation between areas also reflects post‐glacial re‐colonization processes; and 3) faunal composition is determined by the same climatic variables and, therefore, beta diversity (species turnover) is related to richness gradients. Species richness, endemism and beta diversity were modelled using inventories of 37 European territories, built from a database containing the distributions of 609 species. Area, spatial position, and nine topographical and climatic variables were used as predictors in regression and constrained analysis of principal coordinates modelling. Species richness was mostly explained by a temperature gradient, which produced a south‐to‐north decreasing richness gradient. Endemism followed the same pattern, but was also determined by longitudinal variation, peaking in the southwestern and southeastern corners of the continent. Faunal turnover was explained by an important purely spatial pattern and a spatially structured environmental gradient. Thus, contrary to other groups, cerambycid richness was mostly explained by environmental energy, but not by water availability. Endemism was concentrated in the Iberian and Greek peninsulas, but not in Italy. Thus, the latter area may have been the major source of post‐glacial re‐colonization for European longhorn beetles or, otherwise, a poor refuge during glaciations. Turnover patterns were independent of the richness gradient, because northern faunas are nested in southern ones. Turnover, in contrast to richness, was driven by both the independent effects of climate and geographic constraints that might reflect dispersal limitation or stochastic colonization events, suggesting that richness gradients are more environmentally deterministic phenomena than turnover patterns.  相似文献   

19.
Different host species harbour parasite faunas that are anywhere from very similar to very different in species composition. A priori, the similarity in the parasite faunas of any two host species should decrease with increases in either the phylogenetic distance, the distinctness of the environments occupied or the geographical distance between these hosts. We tested these predictions using extensive data on the faunas of fleas (Insecta: Siphonaptera) and gamasid mites (Acari: Parasitiformes) parasitic on rodents across the Palaearctic. For each pair of host species, we computed the similarity in parasite faunas based on both species composition as well as the phylogenetic and/or taxonomic distinctness of parasite species. Phylogenetic distances between hosts were based on patristic distances through a rodent phylogeny, geographic distances were computed from geographic range data, and environmental dissimilarity was measured from the average climatic and vegetation scores of each host range. Using multiple regressions on distance matrices to assess the separate explanatory power of each of the three dependent variables, environmental dissimilarity between the ranges of host species emerged as the best predictor of dissimilarity between parasite faunas, especially for fleas; in the case of mites, phylogenetic distance between host species was also important. A closer look at the data indicates that the flea and mite faunas of two hosts inhabiting different environments are always different, whilst hosts living in similar environments can have either very similar or dissimilar parasite faunas. Additional tests showed that dissimilarity in flea or mite faunas between host geographic ranges was best explained by dissimilarity in vegetation, followed by dissimilarity in climatic conditions. Thus, external environmental factors may play greater roles than commonly thought in the evolution of host-parasite associations.  相似文献   

20.
Although broad-scale inter-specific patterns of leaf traits are influenced by climate, soil, and taxonomic identity, integrated assessments of these drivers remain rare. Here, we quantify these drivers in a field study of 171 plant species in 174 sites across Chinese grasslands, including the Tibetan Plateau, Inner Mongolia, and Xinjiang. General linear models were used to partition leaf trait variation. Of the total variation in leaf traits, on average 27% is due to taxonomic or phylogenetic differences among species within sites (pure species effect), 29% to variation among sites within species (pure site effect), 38% to joint effects of taxonomic and environmental factors (shared effect), and 6.2% to within-site and within-species variation. Examining the pure site effect, climate explained 7.8%, soil explained 7.4%, and climate and soil variables together accounted for 11%, leaving 18% of the inter-site variation due to factors other than climate or soil. The results do not support the hypothesis that soil fertility is the “missing link” to explain leaf trait variation unexplained by climatic factors. Climate- and soil-induced leaf adaptations occur mostly among species, and leaf traits vary little within species in Chinese grassland plants, despite strongly varying climate and soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号