首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In seed plants, the proximate causes of spatial segregation of the sexes (SSS) and its association with environmental variation are thought to be linked to sex-specific morphological and physiological variation. To address the general question of linkage among SSS, plant traits and environmental gradients, Marchantia inflexa was used, for which male plants are found under more open tree canopy than females. We hypothesized that males are adapted to higher light intensity and are better able to tolerate water stress than females, as is the case with seed plants. We tested for sex-specific habitat and trait relationships by quantifying plant traits (morphological and physiological) and estimates of the light conditions (percent canopy openness and light intensity) in the field. Using path analysis, we found that edge pore density in both sexes was negatively correlated with canopy openness, while in males, edge pore density had a weak but positive relationship to light intensity. These responses suggest that canopy openness and light intensity have opposing effects on edge pore density in males and that males might be more responsive to water stress than females. Additionally, the greater importance of female support tissue, which functions as storage, in explaining and being explained by other variables in the path analysis, relative to male support tissue, may reflect sex-specific allocation differences related to resources needed for female function.  相似文献   

2.
Theory predicts that in more stressful environments, positive plant-plant interactions should be more important than negative ones. For instance, in arid and semiarid regions, amelioration of soil drought produced by the shade of established plants could facilitate establishment of other species, in spite of light reduction. However, this theory has not been tested widely in the context of plant invasion. In this paper we evaluated the hypothesis that in a semiarid ecosystem of central Chile, the native tree, Lithrea caustica, should facilitate through positive shading effects, the seedling establishment of two widely planted and invasive forestry species, Pinus radiata and Eucalyptus globulus. We assessed the seedling establishment examining two processes: seedling recruitment (including germination) and subsequent seedling survival. We sowed seeds (to assess recruitment) and planted 8 months old seedlings (to assess seedling survival) of each exotic species under Lithrea patches, open sites and under an artificial shade mimicking Lithrea shading. The study was repeated in a north-facing and a south-facing slope in the study area located in a xeric zone within the distribution range of plantations of these species in central Chile. Our results show that in a north-facing slope Lithrea had positive effects on recruitment of both species, which was produced by shading. These effects were counteracted by negative effects on seedling survival but through a different mechanism, which suggests that Lithrea would have no significant effect on the whole seedling establishment process of Pinus radiata nor Eucalyptus globulus in this habitat. In turn, in a south-facing slope Lithrea had no significant effect on recruitment but had a negative effect on seedling survival, which was not produced by shading. This suggests that in this habitat Lithrea has a negative effect on the seedling establishment of these exotic species. Our results suggest that the effect of the native Lithrea caustica on the seedling establishment of these exotic species is dependent upon the life-cycle phase (recruitment or seedling survival) and habitat even within the same semiarid ecosystem. In contrast to the expected positive effects Lithrea is unlikely to facilitate seedling establishment of these exotic species in this area, and in fact in some habitats this effect could be negative. However, our results also suggest that a common mechanism proposed to resist invasion in forest ecosystems such as shading, probably is not sufficient to inhibit invasion in a semiarid region.  相似文献   

3.
Summary Agropyron desertorum, a grazing-tolerant bunchgrass introduced to the western U.S. from Eurasia, and Agropyron spicatum, a grazing-sensitive bunchgrass native to North America, were examined in the field for photosynthetic capacity, growth, resource allocation, and tiller dynamics. These observations allowed identification of physiological characteristics that may contribute to grazing tolerance in semiarid environments. A uniform matrix of sagebrush, Artemisia tridentata, provided an ecologically relevant competitive environment for both bunch-grass species. Physiological activity, growth, and allocation were also followed during recovery from a severe defoliation treatment and were correlated with tiller dynamics.Potential photosynthetic carbon uptake of both species was dominated by stems and leaf sheaths during June, when maximum uptake rates occurred. For both species, water use efficiency of stems and sheaths was similar to that of leaf blades, but nitrogen investment per photosynthetic surface area was less than in blades. In addition, soluble carbohydrates in stems and sheaths of both species constituted the major labile carbon pools in control plants. Contrary to current theory, these findings suggest that culms from which leaf blades have been removed should be of considerable value to defoliated bunchgrasses, and in the case of partial defoliation could provide important supplies of organic nutrients for regrowth. These interpretations, based on total pool sizes, differ markedly from previous interpretations based on carbohydrate concentrations alone, which suggested that crowns contain large carbohydrate reserves. In this study, crowns of both species contained a minor component of the total plant carbohydrate pool.Following defoliation, A. desertorum plants rapidly reestablished a canopy with 3 to 5 times the photosynthetic surface of A. spicatum plants. This difference was primarily due to the greater number of quickly growing new tillers produced following defoliation. Agropyron spicatum produced few new tillers following defoliation despite adequate moisture, and carbohydrate pools that were equivalent to those in A. desertorum.Leaf blades of regrowing tillers had higher photosynthetic capacity than blades on unclipped plants of both species, but the relative increase, considered on a unit mass, area, or nitrogen basis, was greater for A. desertorum than for A. spicatum. Agropyron desertorum also had lower investment of nitrogen and biomass per unit area of photosynthetic tissues, more tillers and leaves per bunch, and shorter lived stems, all of which can contribute to greater tolerance of partial defoliation.Greater flexibility of resource allocation following defoliation was demonstrated by A. desertorum for both nitrogen and carbohydrates. Relatively more allocation to the shoot system and curtailed root growth in A. desertorum resulted in more rapid approach to the preclipping balance between the root and shoot systems, whereas root growth in A. spicatum continued unabated following defoliation. Nitrogen required for regrowth in both species was apparently supplied by uptake rather than reserve depletion. Carbohydrate pools in the shoot system of both species remained very low following severe defoliation and were approximately equivalent to carbon fixed in one day by photosynthesis of the whole canopy.Dedicated to Drs. Michael Evenari and Konrad Springer  相似文献   

4.
It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (??25?cm), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil ??25?cm was 1.0?C2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where ??25?cm was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A net-sat), stomatal conductance (g s-sat), and whole-plant aboveground respiration (R auto), but with higher whole-plant photosynthesis (GEPplant) and transpiration (T plant) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEPplant, R auto, and T plant. These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.  相似文献   

5.
At large spatial scales, exotic and native plant diversity exhibit a strong positive relationship. This may occur because exotic and native species respond similarly to processes that influence diversity over large geographical areas. To test this hypothesis, we compared exotic and native species–area relationships within six North American ecoregions. We predicted and found that within ecoregions the ratio of exotic to native species richness remains constant with increasing area. Furthermore, we predicted that areas with more native species than predicted by the species–area relationship would have proportionally more exotics as well. We did find that these exotic and native deviations were highly correlated, but areas that were good (or bad) for native plants were even better (or worse) for exotics. Similar processes appear to influence exotic and native plant diversity but the degree of this influence may differ with site quality.  相似文献   

6.
Ecophysiology of exotic and native shrubs in Southern Wisconsin   总被引:14,自引:0,他引:14  
Summary We compared seasonal trends in photosynthesis of two naturalized exotic shrubs (Rhamnus cathartica and Lonicera X bella) and two native shrubs (Cornus racemosa and Prunus serotina) in open and understory habitats in southern Wisconsin. We examined the relationships between resource availability and leaf photosynthetic performance in these four species. All four species had similar relationships between leaf nitrogen (N) content and photosynthetic rate, but the species differed in absolute leaf N content and therefore in photosynthetic rates. Maximum daily photosynthetic rates of all species were significantly correlated with leaf N content in the open habitat, but not in the understory, where low light availability was the major limitation to photosynthesis. Extended leaf longevity was important in the forest understory because it allowed shrubs to take advantage of high light availability at times when the overstory canopy was leafless. Early leaf emergence was more important than late senescence: from 27% to 35% of the annual carbon gain of P. serotina, R. cathartica, and L. X bella occurred prior to leaf emergence of C. racemosa, the species with the shortest leaf life span. Extended leaf longevity of exotic shrubs may help explain their persistence in the understory habitat, but it contributed relatively less to their annual carbon gain in the open habitat.  相似文献   

7.
To assess the impact of Bombus terrestris invasion on the foraging efficiency of native Japanese bumblebees, consumption and acquisition of floral resources during foraging on flowers of native Japanese plant species were investigated using enclosures with three treatments: one with only B. terrestris (exotic), one with both B. terrestris and native Japanese bumblebee species (mixed), and one with only Japanese species (native), but with the bumblebee density held constant. Changes in the body mass of queens and the nest mass of colonies for two days did not significantly differ among four combinations of the species and treatment, B. terrestris in the exotic and mixed treatments and Japanese species in the mixed and native treatments. Thus, it is not clear that B. terrestris has higher foraging efficiency than native species and that B. terrestris individuals more negatively affect the foraging efficiency of native species than individuals of the native species themselves. The nectar standing crop of Cirsium kamtschaticum was smaller in the exotic treatment than in the mixed and native treatments. However, this may have been an artifact of differences in the numbers of flowers in the various treatments. T. Nagamitsu and T. Kenta contributed equally to this work  相似文献   

8.
《Aquatic Botany》2007,86(2):163-170
Two exotic gall fly species infest stems of native and exotic Phragmites australis (Cav.) Trin. ex Steudel in northeastern North America. In this study, we determined the distribution of Lipara similis Schiner and L. rufitarsis Loew in native and exotic P. australis in Rhode Island. We also studied the within-stand distributions of each fly species and their effects on flowering of native and exotic P. australis. We collected stems from populations throughout southern Rhode Island and measured stem length and diameter, and percent flowering. Stems were then dissected to determine Lipara infestation. L. similis and L. rufitarsis were found throughout Rhode Island infesting both native and exotic P. australis, but their presence and abundance varied among sites. Within stands, L. similis infests the taller, thicker interior stems and L. rufitarsis infests the shorter, thinner exterior stems. Lipara similis reduces stem length by 6%; L. rufitarsis infestation reduces stem length by 37%. The flowering rate of uninfested stems is significantly lower in native P. australis stems than in exotic stems. Both Lipara species prevent infested stems from flowering. In adjacent stands of native and exotic P. australis, L. rufitarsis infests significantly more native stems than exotic stems, possibly further reducing the reproductive potential of the native plants relative to the exotic. Lipara species may play a role in facilitating the displacement of native P. australis by the exotic genotype.  相似文献   

9.
We examined seed survival in exotic- and native-dominated grasslands by placing seeds of a once-pervasive native grass species, Nassella pulchra, and two of the most common, widespread exotic grass species, Avena fatua and Bromus hordeaceus, in mesh bags in the field for 3 months. Compared to germination of unexposed seeds not placed in the field, exotic species experienced an approximately 40% reduction in viability, whereas the mortality experienced by the native species was <20%. Despite these differences, germination rates of exposed seeds were similar between native and exotic species because native N. pulchra seeds had lower initial viability prior to entering the seed bank. Seed mortality did not differ based on whether seeds were placed in habitats dominated by exotic or native grasses. Rather, our results suggest that re-establishment of native N. pulchra must focus on maximizing seed viability and survival, and that A. fatua and B. hordeaceus overcome relatively higher losses of viable seeds in the seed bank, potentially by producing large numbers of highly viable seeds.  相似文献   

10.
The popularly cited enemy release hypothesis, which states that non-native species are released from population control by their enemies, has not been adequately tested in plants. Many empirical studies have compared damage to native versus non-native invaders only in the invaded range, which can lead to erroneous conclusions regarding enemy release. Biogeographical studies that have compared natural enemies in native and introduced ranges have typically focused on a small area of the plants’ distributions in each range, only one plant species, and/or only one guild of natural enemies. To test enemy release, we first surveyed both pathogens and herbivores in multiple populations in both the native and naturalized ranges of three commonly co-occurring perennial bunchgrasses introduced to the United States from Europe. We then compared our field results to the number of fungal pathogens that have been documented on each species from published host-pathogen data compilations. Consistent with enemy release, our field survey showed less herbivory and denser populations in the naturalized range, but there was no evidence of release from pathogens. In contrast, the published host-pathogen data compilations produced evidence of enemy release from pathogens. The difference in results produced by the two approaches highlights the need for multiple approaches to testing mechanisms of invasions by introduced species, which can enable well supported theory to inform sound management practices.  相似文献   

11.
For studies into the uptake of mercury vapor by wheat (Triticum aestivum), a simple theory and plant chamber were employed to estimate total leaf resistance of whole plants to water vapor exchange. The estimates were independent of leaf temperature, for which mean values were indirectly determined. The approach involved the measurement, at steady-state conditions, of the net change in water vapor flux per unit of leaf surface (Δqv) in response to a small induced change in absolute humidity (ΔCa). Assuming that total leaf resistance (rl) was constant and that change in leaf temperature (Tl) was negligible, total leaf resistance was calculated from the equation, [Formula: see text]  相似文献   

12.
Abstract Allochtonous leaf litter is an important source of energy and nutrients for invertebrates in cave ecosystems. A change to the quality or quantity of litter entering caves has the potential to disrupt the structure and function of cave communities. In this study, we adopted an experimental approach to examine rates of leaf litter decomposition and the invertebrate assemblages colonizing native and exotic leaf litter in limestone caves in the Jenolan Caves Karst Conservation Reserve, New South Wales, Australia. We deployed traps containing leaf litter from exotic sycamore (Acer pseudoplatanus) and radiata pine (Pinus radiata) trees and native eucalypts (Eucalyptus spp.) in twilight zones (near the cave entrance) and areas deep within the caves for 3 months. Thirty‐two invertebrate morphospecies were recorded from the litter traps, with greater richness and abundance evident in the samples from the twilight zone compared with areas deep within the cave. Sycamore litter had significantly greater richness and abundance of invertebrates compared with eucalypt and pine litter in samples from the twilight zone, but there was no difference in richness or abundance among litter samples placed deep within the cave. Relative rates of decay of the three litters were sycamore > eucalypt > pine. We discuss the potential for the higher decomposition rates and specific leaf area in sycamores to explain their higher invertebrate diversity and abundance. Our findings have important implications for the management of exotic plants and the contribution of their leaf litter to subterranean ecosystems.  相似文献   

13.
Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and colonizer species together.  相似文献   

14.
15.
Aim Coccinellid beetles are important predators that contribute to pest suppression in agricultural landscapes. Since the introduction of the exotic coccinellids Coccinella septempunctata L. and Harmonia axyridis Pallas into the USA, several studies have reported a decline of native Coccinellidae in agroecosystems. We aimed to investigate the influence of landscape composition on native and exotic coccinellid abundance within soybean fields. Location Iowa, Michigan, Minnesota and Wisconsin. Methods As part of a 2‐year study (2005–06) on the biological control of the soybean aphid, Aphis glycines Matsumura, we examined coccinellid communities in 33 soybean fields using yellow sticky card traps. Landscape heterogeneity and composition were measured at multiple spatial scales ranging 1–3.5 km from focal soybean fields where coccinellid sampling took place. Results Exotic species made up 90% of the total coccinellid community in Michigan soybean fields followed by Wisconsin (84%), Minnesota (66%) and Iowa (57%). Harmonia axyridis was the dominant exotic coccinellid in all states comprising 45–62% of the total coccinellid community, followed by C. septempunctata (13–30%). Two additional exotic species, Hippodamia variegata (Goeze) and Propylea quatuordecimpunctata (L.) were also found in the region. Overall, the most abundant native coccinellid was Hippodamia convergens Guerin‐Meneville; however, its abundance varied across the region, comprising 0% (Michigan) to 28% (Iowa) of the total coccinellid community. Landscape structure significantly influenced the composition of coccinellid communities in soybean agroecosystems. We found that native coccinellids were most abundant in low‐diversity landscapes with an abundance of grassland habitat while exotic coccinellids were associated with the abundance of forested habitats. Main conclusion We propose that grassland dominated landscapes with low structural diversity and low amounts of forested habitat may be resistant to exotic coccinellid build‐up, particularly H. axyridis and therefore represent landscape‐scale refuges for native coccinellid biodiversity.  相似文献   

16.
黄兰兰  王冉  时晓菲  于富强 《菌物学报》2022,41(8):1293-1302
为探讨早期真菌与本土和外来松树的共生特性,选用3种早期外生菌根真菌(环褐乳牛肝菌Suillus luteus、虎皮乳牛肝菌S. phylopictus和酒红蜡蘑Laccaria vinaceoavellanea)接种2种本地松(云南松Pinus yunnanensis、华山松P. armandii)和2种外来松(P. greggiiP. maximartinensis),并对接种后的侵染率、菌根特征和松苗株高等进行测量和分析,结果显示:6个月后,2种乳牛肝菌与4种松均能形成菌根,华山松与2种乳牛肝菌的亲和性最好,酒红蜡蘑仅能与2种外来松P. greggiiP. maximartinensis形成菌根,且菌根合成成功率仅为14.3%。此次合成的10种菌根组合均为首次报道,其中同一种真菌与不同松形成的菌根在形态和解剖特征上较为接近。3种真菌对宿主生长的促进作用因树种而异,整体上外来松苗的生长速率要快于本土松苗;华山松苗虽然菌根感染率最高,但生长效应却均不明显。研究认为:孢子接种对乳牛肝菌、蜡蘑等早期真菌的菌根合成研究是一种经济有效的手段;外生菌根真菌可能对外来树种具有更为重要的作用,与本土树种相比,外来树种与外生菌根真菌在能否形成菌根、菌根形成时间以及对宿主的生长效应等方面存在差异,需要开展进一步深入的相关研究。  相似文献   

17.
Prairie reconstructions are a critical component of preservation of the imperiled tallgrass prairie ecosystem in the Midwestern United States. Sustainability of this endeavor depends on establishment of persistent cover of planted native species and resistance to noxious weeds. The goal of this study was to understand the influence of early reconstruction practices on long‐term outcomes. Twelve replicates of three planting methods (dormant‐season broadcast, growing‐season broadcast, and growing‐season drill) and three seed mix richness levels (10, 20, or 34 species), fully crossed in a completely randomized design were planted in 2005 on nine former agricultural fields located in Iowa and Minnesota. Cover by species was estimated in 2005–2007, 2010, and 2015. In 2015, cover of planted species, native nonplanted species, and exotic species were similar to those recorded in 2010. Cover of the noxious weed Cirsium arvense had also declined by an average of 49% without herbicide from a peak in 2007 to low stable levels from 2010 to 2015. Richness of planted forbs, on the other hand, were still increasing in high‐richness broadcast treatments (e.g. 17–59% increase 2010–1015 in Minnesota). Two results in 2015 are reasons for concern: cover of planted species is only slightly over 50% in both Minnesota and Iowa, though with forbs still increasing, this may improve; and the cool‐season exotic grasses Poa pratensis and Bromus inermis are increasing at both Minnesota and Iowa sites. Control of these invasive grasses will be necessary, but care will be needed to avoid negative impacts of control methods on natives.  相似文献   

18.
Ant fauna on Mallotus japonicus, a shrub with extrafloral nectaries, was investigated in two types of habitat (the villages and the forest‐edges) on subtropical Okinawa Island, Japan. Twenty and 16 ant species were found, including 11 and 6 tramp species in the villages and in the forest‐edges, respectively. Occurrence of tramp species was higher in the villages than in the forest edges, supporting the idea that tramp species tend to dominate in disturbed habitats. Nevertheless, the richness of native ants was almost the same across the two habitat types. Consequently, the ant species diversity on M. japonicus appeared higher in the villages. However, monitoring has to be continued to determine whether the above findings represent a stable phenomenon of the community or just a temporary state.  相似文献   

19.
The source-sink ratio of 1-year-old, potted sour cherry trees ( Prunus cerasus L.) was altered by whold-plant partial defoliation or continuous illumination to determine if trees were primarily sink limited and to elucidate the means whereby photosynthetic enhancement or inhibition occurs. Leaf xylem water potential was not affected by either treatment. Although stomatal conductance was reduced by 1 to 3 days of continuous illumination, internal CO2 concentration was not significantly affected indicating that the enhanced physical limitation imposed by the stomata was of no physiological significance. Net CO2 assimilation (A) was significantly higher 4 days after partial defoliation and lower from 1 to 4 days following continuious illumination. The increase in A in partially defoliated plants was associated with reduced leaf starch and increased surose and sorbitol concentrations. The decrease in A in continuously illuminated plants was associated with a decrease in variable fluorescence, photochemical efficiency of photosystem II (PSII) and an increase in instantaneous fluorescence, indicating that leaves were photoinhibited and that irreversible damage had occurred to PSII. In addition, leaves of continuously illuminated plants had 80% more starch and significantly less sucrose and sorbitol. These altered leaf carbohydrate concentrations indicate that the existing sink limitation may have been aggravated by continuous illumination leading to an insufficient utilization of sucrose from the leaf. Whether the altered photochemical and biochemical events occurred simultaneously and/or to the same degree to lead to the observed responses remains equivocal.  相似文献   

20.
Over 20 catches of Atlantic sturgeon Acipenser sturio have been recorded in Estonia in the 20th century. Spawning apparently took place in the watershed of the Gulf of Riga prior to the 1970s. A mature female (total length 290 cm, total mass 136 kg, age more than 40 years) containing 28 kg of roe, was caught on May 24, 1996, near Muhu Island in the Western Estonian archipelago.
Since the 1960's exotic species such as the Siberian and Russian sturgeons, and the bester, have been introduced into Estonia for stocking into natural waters and for aquaculture. Current protective measures are insufficient to guarantee the survival of the last specimens of A. sturio if they are caught by fishermen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号