首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, it was found that the killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b has both killing activity and β-1,3-glucanase activity and the molecular mass of it is 47.0 kDa. In this study, the same yeast strain was found to produce another killer toxin which only had killing activity against some yeast strains, but had no β-1,3-glucanase activity and the molecular mass of the purified killer toxin was 67.0 kDa. The optimal pH, temperature and NaCl concentration for action of the purified killer toxin were 3.5, 16 °C and 4.0 % (w/v), respectively. The purified killer toxin could be bound by the whole sensitive yeast cells, but was not bound by manann, chitin and β-1,3-glucan. The purified killer toxin had killing activity against Yarrowia lipolytica, Saccharomyces cerevisiae, Metschnikowia bicuspidata WCY, Candida tropicalis, Candida albicans and Kluyveromyces aestuartii. Lethality of the sensitive cells treated by the newly purified killer toxin from W. anomalus YF07b involved disruption of cellular integrity by permeabilizing cytoplasmic membrane function.  相似文献   

2.
The use of Kluyveromyces phaffii DBVPG 6076 killer toxin against apiculate wine yeasts has been investigated. The killer toxin of K. phaffii DBVPG 6076 showed extensive anti-Hanseniaspora activity against strains isolated from grape samples. The proteinaceous killer toxin was found to be active in the pH range of 3 to 5 and at temperatures lower than 40°C. These biochemical properties would allow the use of K. phaffii killer toxin in wine making. Fungicidal or fungistatic effects depend on the toxin concentration. Toxin concentrations present in the supernatant during optimal conditions of production (14.3 arbitrary units) exerted a fungicidal effect on a sensitive strain of Hanseniaspora uvarum. At subcritical concentrations (fungistatic effect) the saturation kinetics observed with the increased ratio of killer toxin to H. uvarum cells suggest the presence of a toxin receptor. The inhibitory activity exerted by the killer toxin present in grape juice was comparable to that of sulfur dioxide. The findings presented suggest that the K. phaffii DBVPG 6076 killer toxin has potential as a biopreservative agent in wine making.  相似文献   

3.
Cycle inhibiting factor (Cif) is produced by pathogenic intracellular bacteria and injected into the host cells via a type III secretion system. Cif is known to interfere with the eukaryotic cell cycle by inhibiting the function of cullin RING E3 ubiquitin ligases (CRLs). Cullin proteins form the scaffold protein of CRLs and are modified with the ubiquitin-like protein Nedd8, which exerts important conformational control required for CRL activity. Cif has recently been shown to catalyze the deamidation of Gln40 in Nedd8 to Glu. Here, we addressed how Nedd8 deamidation inhibits CRL activity. Our results indicate that Burkholderia pseudomallei Cif (also known as CHBP) inhibits the deconjugation of Nedd8 in vivo by inhibiting binding of the deneddylating COP9 signalosome (CSN) complex. We provide evidence that the reduced binding of CSN and the inhibition of CRL activity by Cif are due to interference with Nedd8-induced conformational control, which is dependent on the interaction between the Nedd8 hydrophobic patch and the cullin winged-helix B subdomain. Of note, mutation of Gln40 to Glu in ubiquitin, an additional target of Cif, inhibits the interaction between the hydrophobic surface of ubiquitin and the ubiquitin-binding protein p62/SQSTM1, showing conceptually that Cif activity can impair ubiquitin/ubiquitin-like protein non-covalent interactions. Our results also suggest that Cif may exert additional cellular effects by interfering with the association between ubiquitin and ubiquitin-binding proteins.  相似文献   

4.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40°C. The killer protein was chromosomally encoded. Mannan, but not β-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

5.
Nedd8, a ubiquitin-like modifier, is covalently attached to various proteins. Although Nedd8 has higher sequence identity (57%) with ubiquitin, its conserved K48 residue cannot form covalent linkage with ubiquitin. To decipher the reason why Nedd8 cannot be an effective ubiquitin-acceptor, we compared the non-covalent interaction between Nedd8 and ubiquitin for various E2s using cross-saturation NMR technique. However, both Nedd8 and ubiquitin displayed almost identical non-covalent E2-binding properties. The K60 of Nedd8 was not present at the E2-binding surface, but its mutation to Asn converted Nedd8 into a ubiquitin-acceptor. The N60 ubiquitin mutants also displayed a decreased ubiquitin-accepting activity. These results suggest the presence of an uncharacterized determinant for the K48 ubiquitin-linkage that is not related to non-covalent E2-bindings.

Structured summary

MINT-7263328: NEDD8 (uniprotkb:Q15843) and Ubiquitin (uniprotkb:P62988) physically interact (MI:0914) by enzymatic studies (MI:0415)  相似文献   

6.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

7.
PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin’s ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity.  相似文献   

8.
The psychrotolerant yeast Mrakia frigida 2E00797 isolated from sea sediments in Antarctica was found to be able to produce killer toxin against Metschnikowia bicuspidata, Candida tropicalis and Candida albicans. In the present study, the killer toxin was purified and characterized. The molecular weight of the purified killer toxin was estimated to be 55.6 kDa and the purified killer toxin shared 35.1% sequence homology with a protein kinase. The purified killer toxin's optimal temperature and pH for killing activity were 16 °C and 4.5, respectively, and it was stable in the temperature range from 10 to 25 °C at pH 4.5. The toxin's highest killing activity was observed in the presence of 3.0 g/100 ml NaCl. The purified killer toxin was able to actively kill whole cells of M. bicuspidata but could not kill the protoplast of the sensitive yeast. Of the eight yeast species tested in this study, the killer toxin was able to kill C. tropicalis and C. albicans in addition to M. bicuspidata.  相似文献   

9.
The HM-1 killer toxin from Hansenula mrakii is known to inhibit cell wall β-1,3-glucan synthase of Saccharomyces cerevisiae and other sensitive strains of yeast. A number of mutants of Saccharomyces cerevisiae that show resistance to this toxin were isolated in order to clarify the killing mechanism of the toxin. These mutants, designated rhk (resistant to Hansenula killer), were classified into three complementation groups. A novel gene RHK1, which complements the killer-resistant phenotype of the largest complementation group rhk1, was isolated. DNA sequence analysis revealed an open reading frame that encodes a hydrophobic protein composed of 458 amino acids. Gene disruption followed by tetrad analysis showed that RHK1 is not essential and loss of RHK1 function endowed S. cerevisiae cells with complete killer resistance. A biochemical analysis suggested that RHK1 does not participate directly in the synthesis of β-1,3-glucan but is involved in the synthesis of the receptor for the HM-1 killer toxin.  相似文献   

10.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

11.
Killer yeasts are considered potential biocontrol agents to avoid or reduce wine spoilage by undesirable species. In this study two Saccharomyces cerevisiae strains (Cf8 and M12) producing killer toxin were partially characterized and new strategies to improve their activity in winemaking were evaluated. Killer toxins were characterized by biochemical tests and growth inhibition of sensitive yeasts. Also genes encoding killer toxin were detected in the chromosomes of both strains by PCR. Both toxins showed optimal activity and production at conditions used during the wine-making process (pH 3.5 and temperatures of 15–25 °C). In addition, production of both toxins was higher when a nitrogen source was added. To improve killer activity different strategies of inoculation were studied, with the sequential inoculation of killer strains the best combination to control the growth of undesired yeasts. Sequential inoculation of Cf8–M12 showed a 45 % increase of killer activity on sensitive S. cerevisiae and spoilage yeasts. In the presence of ethanol (5–12 %) and SO2 (50 mg/L) the killer activity of both toxins was increased, especially for toxin Cf8. Characteristics of both killer strains support their future application as starter cultures and biocontrol agents to produce wines of controlled quality.  相似文献   

12.
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.  相似文献   

13.
The killer character of yeast is determined by a 1.4 x 106 molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secrete a toxin which is lethal only to strains not carrying this plasmid (sensitives). ——— We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, kex1 and kex2. Kex1 is located on chromosome VII between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome. ——— When the killer plasmid of kex1 or kex2 strains is eliminated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid. ——— Kex1 and kex2 strains each contain near-normal levels of the 1.4 x 106 molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome.  相似文献   

14.
The killer toxin produced by the Pichia farinosa KK1 strain was purified by ammonium sulfate precipitation, gel filtration, ion-exchange chromatography and reverse-phase HPLC. The molecular weight of the killer toxin was about 25 kd and its isoelectric point was 6.4. A significant amount of carbohydrate was not detected in the purified killer toxin, suggesting that the toxin is not glycosylated. Its N-terminal amino acid sequence showed no homology with other proteins. The stability and efficacy of the toxin’s killer activity was examined. The toxin completely retained activity at pH 2.5 ~ 4.0 and 5°C, but lost activity at higher temperatures. Killer activity increased with increasing NaCl or KC1 concentration, although NaCl was more effective than KCl.  相似文献   

15.
The K1 killer virus (or plasmid) of Saccharomyces cerevisiae is a noninfectious double-stranded RNA genome found intracellularly packaged in an icosahedral capsid. This genome codes for a protein toxin and for resistance to that toxin. Defective interfering virus mutants are deletion derivatives of the killer virus double-stranded RNA genome; such mutants are called suppressive. Unlike strains carrying the wild-type genome, strains with these deletion derivatives are neither toxin producers nor toxin resistant. If both the suppressive and the wildtype virus are introduced into the same cell, most progeny become toxin-sensitive nonkillers (J. M. Somers, Genetics 74:571-579, 1973). Diploids formed by the mating of a killer with a suppressive strain were grown in liquid culture, and RNA was extracted from samples taken up to 41 generations after the mating. The ratio of killer RNA to suppressive RNA decreased with increasing generations; by 41 generations the killer RNA was barely detectable. The copy numbers of the suppressive genome and its parental killer were virtually the same in isogenic strains, as were the growth rates of diploid strains containing either virus alone. Therefore, suppressiveness, not being due to segregation or overgrowth by faster growing segregants, is likely due to preferential replication or maintenance of the suppressive genome. Three suppressive viruses, all derivatives of the same killer virus (T. K. Sweeney et al., Genetics 84:27-42, 1976), did not coexist stably. The evidence strongly indicates that the largest genome of the three slowly suppressed both of the smaller genomes, showing that larger genomes can suppress smaller ones and that suppression can occur between two suppressives. Of 48 isolates of strains carrying the suppressive viruses, 5 had newly detectable RNA species, all larger than the original suppressive genomes. At least seven genes necessary for maintenance of the wild-type killer virus (MAK genes) were needed by a suppressive mutant. No effect of ski mutations (affecting regulation of killer virus double-stranded RNA replication) on suppressiveness was observed.  相似文献   

16.
In archaea, two ubiquitin-like small archaeal modifier protein (SAMPs) were recently shown to be conjugated to proteins in vivo. SAMPs display homology to bacterial MoaD sulfur transfer proteins and eukaryotic ubiquitin-like proteins, and they share with them the conserved C-terminal glycine-glycine motif. Here, we report the solution structure of SAMP1 from Methanosarcina acetivorans and the activation of SAMPs by an archaeal protein with homology to eukaryotic E1 enzymes. Our results show that SAMP1 possesses a β-grasp fold and that its hydrophobic and electrostatic surface features are similar to those of MoaD. M. acetivorans SAMP1 exhibits an extensive flexible surface loop between helix-2 and the third strand of the β-sheet, which contributes to an elongated surface groove that is not observed in bacterial ubiquitin homologues and many other SAMPs. We provide in vitro biochemical evidence that SAMPs are activated in an ATP-dependent manner by an E1-like enzyme that we have termed E1-like SAMP activator (ELSA). We show that activation occurs by formation of a mixed anhydride (adenylate) at the SAMP C-terminus and is detectable by SDS-PAGE and electrospray ionization mass spectrometry.  相似文献   

17.
Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high- and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment.  相似文献   

18.
The gene responsible for self-protection in the Pichia acaciae killer plasmid system was identified by heterologous expression in Saccharomyces cerevisiae. Resistance profiling and conditional toxin/immunity coexpression analysis revealed dose-independent protection by pPac1-2 ORF4 and intracellular interference with toxin function, suggesting toxin reinternalization in immune killer cells.  相似文献   

19.
The genus Shigella infects human gut epithelial cells to cause diarrhea and gastrointestinal disorders. Like many other Gram-negative bacterial pathogens, the virulence of Shigella spp. relies on a conserved type three secretion system that delivers a handful of effector proteins into host cells to manipulate various host cell physiology. However, many of the Shigella type III effectors remain functionally uncharacterized. Here we observe that OspG, one of the Shigella effectors, interacted with ubiquitin conjugates and poly-ubiquitin chains of either K48 or K63 linkage in eukaryotic host cells. Purified OspG protein formed a stable complex with ubiquitin but showed no interactions with other ubiquitin-like proteins. OspG binding to ubiquitin required the carboxyl terminal helical region in OspG and the canonical I44-centered hydrophobic surface in ubiquitin. OspG and OspG-homologous effectors, NleH1/2 from enteropathogenic E coli (EPEC), contain sub-domains I-VII of eukaryotic serine/threonine kinase. GST-tagged OspG and NleH1/2 could undergo autophosphorylation, the former of which was significantly stimulated by ubiquitin binding. Ubiquitin binding was also required for OspG functioning in attenuating host NF-κB signaling. Our data illustrate a new mechanism that bacterial pathogen like Shigella exploits ubiquitin binding to activate its secreted virulence effector for its functioning in host eukaryotic cells.  相似文献   

20.
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号