首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 +/- 2.3 pS and a mean open time of 0.84 +/- 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 +/- 6% in patch-clamped axons compared with 28 +/- 4% in intact axons, slowed inactivation by 58 +/- 8% compared with 49 +/- 6%, and increased mean open time by 52 +/- 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.  相似文献   

2.
In perfused squid giant axons, potassium channels irreversibly deteriorate when the internal K+ is removed and replaced by impermeant ions. Under the same conditions in perfused Myxicola giant axons, the K+ conductance is also irreversibly lost with a time constant of 10-15 min. In contrast, the K+ conductance in Myxicola giant axons dialyzed with impermeant ions and bathed in monovalent cation free solutions does not deteriorate, even over 5-6 h. Thus we suggest that washout of some internal component may be an important additional factor in the deterioration of K+ channels in perfused giant axons.  相似文献   

3.
The time-, frequency-, and voltage-dependent blocking actions of several cationic drug molecules on open Na channels were investigated in voltage-clamped, internally perfused squid giant axons. The relative potencies and time courses of block by the agents (pancuronium [PC], octylguanidinium [C8G], QX-314, and 9-aminoacridine [9-AA]) were compared in different intracellular ionic solutions; specifically, the influences of internal Cs, tetramethylammonium (TMA), and Na ions on block were examined. TMA+ was found to inhibit the steady state block of open Na channels by all of the compounds. The time-dependent, inactivation-like decay of Na currents in pronase-treated axons perfused with either PC, 9-AA, or C8G was retarded by internal TMA+. The apparent dissociation constants (at zero voltage) for interaction between PC and 9-AA with their binding sites were increased when TMA+ was substituted for Cs+ in the internal solution. The steepness of the voltage dependence of 9-AA or PC block found with internal Cs+ solutions was greatly reduced by TMA+, resulting in estimates for the fractional electrical distance of the 9-AA binding site of 0.56 and 0.22 in Cs+ and TMA+, respectively. This change may reflect a shift from predominantly 9-AA block in the presence of Cs+ to predominantly TMA+ block. The depth, but not the rate, of frequency-dependent block by QX-314 and 9-AA is reduced by internal TMA+. In addition, recovery from frequency-dependent block is not altered. Elevation of internal Na produces effects on 9-AA block qualitatively similar to those seen with TMA+. The results are consistent with a scheme in which the open channel blocking drugs, TMA (and Na) ions, and the inactivation gate all compete for a site or for access to a site in the channel from the intracellular surface. In addition, TMA ions decrease the apparent blocking rates of other drugs in a manner analogous to their inhibition of the inactivation process. Multiple occupancy of Na channels and mutual exclusion of drug molecules may play a role in the complex gating behaviors seen under these conditions.  相似文献   

4.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

5.
The effects of pronase and the anticonvulsant drugs diphenylhydantoin, bepridil, and sodium valproate on fast and slow Na+ inactivation were examined in cut-open Myxicola giant axons with loose patch-clamp electrodes applied to the internal surface. Pronase completely eliminated fast Na+ inactivation without affecting the kinetics of Na+ activation or the maximum Na+ conductance. The time and voltage dependences of slow inactivation following pronase treatment were identical to those measured before enzyme application in the same axons. All three anticonvulsants slowed the time course of recovery from fast Na+ inactivation in untreated axons, and shifted the steady-state fast inactivation curve in the hyperpolarizing direction along the voltage axis. Anticonvulsants enhanced steady-state slow inactivation and retarded recovery from slow inactivation in both untreated and pronase-treated axons. Although some quantitative differences were seen, the order of potency of the anticonvulsants on slow Na+ inactivation was the same as that for recovery from fast inactivation.  相似文献   

6.
Upon depolarization, many voltage-gated potassium channels undergo a time-dependent decrease in conductance known as inactivation. Both entry of channels into an inactivated state and recovery from this state govern cellular excitability. In this study, we show that recovery from slow inactivation is regulated by intracellular permeant cations. When inactivated channels are hyperpolarized, closure of the activation gate traps a cation between the activation and inactivation gates. The identity of the trapped cation determines the rate of recovery, and the ability of cations to promote recovery follows the rank order K+ > NH4+ > Rb+ > Cs+ > Na+, TMA. The striking similarity between this rank order and that for single channel conductance suggests that these two processes share a common feature. We propose that the rate of recovery from slow inactivation is determined by the ability of entrapped cations to move into a binding site in the channel's selectivity filter, and refilling of this site is required for recovery.  相似文献   

7.
Kv4 channels are thought to lack a C-type inactivation mechanism (collapse of the external pore) and to inactivate as a result of a concerted action of cytoplasmic regions of the channel. To investigate whether Kv4 channels have outer pore conformational changes during the inactivation process, the inactivation properties of Kv4.3 were characterized in 0 mM and in 2 mM external K+ in whole-cell voltage-clamp experiments. Removal of external K+ increased the inactivation rates and favored cumulative inactivation by repetitive stimulation. The reduction in current amplitude during repetitive stimulation and the faster inactivation rates in 0 mM external K+ were not due to changes in the voltage dependence of channel opening or to internal K+ depletion. The extent of the collapse of the K+ conductance upon removal of external K+ was more pronounced in NMG+-than in Na+-containing solutions. The reduction in the current amplitude during cumulative inactivation by repetitive stimulation is not associated with kinetic changes, suggesting that it is due to a diminished number of functional channels with unchanged gating properties. These observations meet the criteria for a typical C-type inactivation, as removal of external K+ destabilizes the conducting state, leading to the collapse of the pore. A tentative model is presented, in which K+ bound to high-affinity K+-binding sites in the selectivity filter destabilizes an outer neighboring K+ modulatory site that is saturated at approximately 2 mM external K+. We conclude that Kv4 channels have a C-type inactivation mechanism and that previously reported alterations in the inactivation rates after N- and C- termini mutagenesis may arise from secondary changes in the electrostatic interactions between K+-binding sites in the selectivity filter and the neighboring K+-modulatory site, that would result in changes in its K+ occupancy.  相似文献   

8.
We studied the effects of modification of native cysteines present in squid giant axon Na channels with methanethiosulfonates. We find that intracellular, but not extracellular, perfusion of axons with positively charged [(2-trimethylammonium)-ethyl]methanethiosulfonate (MTSET), or 3(triethylammonium)propyl]methanethiosulfonate (MTS-PTrEA) irreversibly reduces sodium ionic (INa) and gating (Ig) currents. The rate of modification of Na channels was dependent on the concentration of the modifying agent and the transmembrane voltage. Hyperpolarized membrane potentials (e.g., -110 mV) protected the channels from modification by MTS-PTrEA. In addition to reducing the amplitudes of INa and Ig, MTS-PTrEA also altered their kinetics such that the remaining INa did not appear to inactivate, whereas Ig was made sharper and declined to baseline more quickly. The shape and amplitude of Ig after modification of channels with MTS-PTrEA appeared to be "charge-immobilized," as if the modified channels were inactivated. MTS-PTrEA did not affect INa or Ig when inactivation was removed by internal perfusion of the axon with pronase. In addition, we find that the steady-state inactivation curve of modified Na channels is made much shallower and is markedly shifted to hyperpolarized potentials. The rates of activation, deactivation, or open-state inactivation were not altered in MTS-PTrEA-modified channels. The uncharged sulfhydryl reagent methymethanethiosulfonate (MMTS) did not affect either INa or Ig, but prevented the irreversible effects of MTS-PTrEA or MTSET on Na channels. It is proposed that the positively charged methanethiosulfonates MTS-PTrEA and MTSET modify a native internal cysteine(s) in squid Na channels, and by doing so promote inactivation from closed states, resulting in charge immobilization and reduction of INa.  相似文献   

9.
Current- and voltage-clamp experiments on Myxicola giant axons labelled with pyrene showed decreased Na+ and K+ conductances. The low-frequency membrane capacity and the gating charge transfer were slightly reduced. It may be inferred that pyrene is incorporated in some hydrophobic membrane domains close to the ionic channels.  相似文献   

10.
This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation.  相似文献   

11.
Human heart (hH1), human skeletal muscle (hSkM1), and rat brain (rIIA) Na channels were expressed in cultured cells and the activation and inactivation of the whole-cell Na currents measured using the patch clamp technique. hH1 Na channels were found to activate and inactivate at more hyperpolarized voltages than hSkM1 and rIIA. The conductance versus voltage and steady state inactivation relationships have midpoints of -48 and -92 mV (hH1), -28 and -72 mV (hSkM1), and -22 and -61 mV (rIIA). At depolarized voltages, where Na channels predominately inactivate from the open state, the inactivation of hH1 is 2-fold slower than that of hSkM1 and rIIA. The recovery from fast inactivation of all three isoforms is well described by a single rapid component with time constants at -100 mV of 44 ms (hH1), 4.7 ms (hSkM1), and 7.6 ms (rIIA). After accounting for differences in voltage dependence, the kinetics of activation, inactivation, and recovery of hH1 were found to be generally slower than those of hSkM1 and rIIA. Modeling of Na channel gating at hyperpolarized voltages where the channel does not open suggests that the slow rate of recovery from inactivation of hH1 accounts for most of the differences in the steady-state inactivation of these Na channels.  相似文献   

12.
Inactivation of currents carried by Ba2+ and Ca2+, as well as intramembrane charge movement from L-type Ca2+ channels were studied in guinea pig ventricular myocytes using the whole-cell patch clamp technique. Prolonged (2 s) conditioning depolarization caused substantial reduction of charge movement between -70 and 10 mV (charge 1, or charge from noninactivated channels). In parallel, the charge mobile between -70 and -150 mV (charge 2, or charge from inactivated channels) was increased. The availability of charge 2 depended on the conditioning pulse voltage as the sum of two Boltzmann components. One component had a central voltage of -75 mV and a magnitude of 1.7 nC/microF. It presumably is the charge movement (charge 2) from Na+ channels. The other component, with a central voltage of approximately - 30 mV and a magnitude of 3.5 nC/microF, is the charge 2 of L-type Ca2+ channels. The sum of charge 1 and charge 2 was conserved after different conditioning pulses. The difference between the voltage dependence of the activation of L-type Ca2+ channels (half-activation voltage, V, of approximately -20 mV) and that of charge 2 (V of -100 mV) made it possible to record the ionic currents through Ca2+ channels and charge 2 in the same solution. In an external solution with Ba2+ as sole metal the maximum available charge 2 of L-type Ca2+ channels was 10-15% greater than that in a Ca(2+)-containing solution. External Cd2+ caused 20-30% reduction of charge 2 both from Na+ and L-type Ca2+ channels. Voltage- and Ca(2+)-dependent inactivation phenomena were compared with a double pulse protocol in cells perfused with an internal solution of low calcium buffering capacity. As the conditioning pulse voltage increased, inactivation monitored with the second pulse went through a minimum at about 0 mV, the voltage at which conditioning current had its maximum. Charge 2, recorded in parallel, did not show any increase associated with calcium entry. Two alternative interpretations of these observations are: (a) that Ca(2+)- dependent inactivation does not alter the voltage sensor, and (b) that inactivation affects the voltage sensor, but only in the small fraction of channels that open, and the effect goes undetected. A model of channel gating that assumes the first possibility is shown to account fully for the experimental results. Thus, extracellular divalent cations modulate voltage-dependent inactivation of the Ca2+ channel. Intracellular Ca2+ instead, appears to cause inactivation of the channel without affecting its voltage sensor.  相似文献   

13.
Wang Z  Fedida D 《Biophysical journal》2001,81(5):2614-2627
Sustained Na(+) or Li(+) conductance is a feature of the inactivated state in wild-type (WT) and nonconducting Shaker and Kv1.5 channels, and has been used here to investigate the cause of off-gating charge immobilization in WT and Kv1.5-W472F nonconducting mutant channels. Off-gating immobilization in response to brief pulses in cells perfused with NMG/NMG is the result of a more negative voltage dependence of charge recovery (V(1/2) is -96 mV) compared with on-gating charge movement (V(1/2) is -6.3 mV). This shift is known to be associated with slow inactivation in Shaker channels and the disparity is reduced by 40 mV, or approximately 50% in the presence of 135 mM Cs. Off-gating charge immobilization is voltage-dependent with a V(1/2) of -12 mV, and correlates well with the development of Na(+) conductance on repolarization through C-type inactivated channels (V(1/2) is -11 mV). As well, the time-dependent development of the inward Na(+) tail current and gating charge immobilization after depolarizing pulses of different durations has the same time constant (tau = 2.7 ms). These results indicate that in Kv1.5 channels the transition to a stable C-type inactivated state takes only 2-3 ms and results in strong charge immobilization in the absence of Group IA metal cations, or even in the presence of Na. Inclusion of low concentrations of Cs delays the appearance of Na(+) tail currents in WT channels, prevents transition to inactivated states in Kv1.5-W472F nonconducting mutant channels, and removes charge immobilization. Higher concentrations of Cs are able to modulate the deactivating transition in Kv1.5 channels and prevent the residual slowing of charge return.  相似文献   

14.
Careful examination of effects of solvent substitution on excitable membranes offers the theoretical possibility of identifying those aspects of the gating and translocation processes which are associated with significant changes in solvent order. Such information can then be used to develop or modify moire detailed models. We have examined the effects of heavy water substitution in Cs+-and K+-dialyzed Myxicola giant axons. At temperatures of 4-6 degrees C, the rates of Na+, K+, and Na+ inactivation during a maintained depolarization were all showed by approximately 50% in the presence of D2O. In contrast, the effects of solvent substitution on the time-course of prepulse inactivation and reactivation were much larger, with slowing averaging 160%. Studies at higher temperatures yielded Q10's for Na+ activation and K+ activation which were essentially comparable (0.72) and slightly but significantly smaller than that for inactivation during a maintained depolarization (0.84). In contrast, the Q10 for the D2O effect on prepulse inactivation was approximately 0.48. Heavy water substitution decrease Gk to a significantly greater extent than G(Na), while the decrease in the conductance of the Na+ channel caused by D2O was independent of whether the current-carrying species was Na+ or Li+. Sodium channel selectivity to the alkali metal cations and NH4+ was not changed by D2O substitution.  相似文献   

15.
We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.  相似文献   

16.
Na(+) conductance through cloned K(+) channels has previously allowed characterization of inactivation and K(+) binding within the pore, and here we have used Na(+) permeation to study recovery from C-type inactivation in human Kv1.5 channels. Replacing K(+) in the solutions with Na(+) allows complete Kv1.5 inactivation and alters the recovery. The inactivated state is nonconducting for K(+) but has a Na(+) conductance of 13% of the open state. During recovery, inactivated channels progress to a higher Na(+) conductance state (R) in a voltage-dependent manner before deactivating to closed-inactivated states. Channels finally recover from inactivation in the closed configuration. In the R state channels can be reactivated and exhibit supernormal Na(+) currents with a slow biexponential inactivation. Results suggest two pathways for entry to the inactivated state and a pore conformation, perhaps with a higher Na(+) affinity than the open state. The rate of recovery from inactivation is modulated by Na(+)(o) such that 135 mM Na(+)(o) promotes the recovery to normal closed, rather than closed-inactivated states. A kinetic model of recovery that assumes a highly Na(+)-permeable state and deactivation to closed-inactivated and normal closed states at negative voltages can account for the results. Thus these data offer insight into how Kv1. 5 channels recover their resting conformation after inactivation and how ionic conditions can modify recovery rates and pathways.  相似文献   

17.
Potassium ions are vital for maintaining functionality of K channels. In their absence, many K channel types enter a long-lasting defunct condition characterized by absence of conductance and drastic changes in gating current. We show that channels pass through a dilated condition with altered selectivity as they are becoming defunct. To characterize these abnormalities we examined gating and ionic currents generated by Shaker IR and by three nonconducting mutants, W434F, D447N, and Y445A, in 0 K+. On entering the dilated condition, Shaker IR becomes permeable to Na+ and tetramethylammonium-positive (TMA+), signaling deformation of the selectivity filter. When dilated, nearly normal closing is possible at -140 mV. At -80 mV, however, closing is very slow and channels stray from the dilated into the defunct condition. Restoration from defunct to dilated condition requires tens of seconds at 0 mV and can occur in the absence of K+. W434F and D447N are similar to Shaker IR, showing Na+ and TMA+ permeability when dilated. The defunct gating currents are similar in Shaker IR and these two mutants and are reminiscent of the early transitions of normal gating. Y445A does not become defunct and shows Na+ but not TMA+ permeability on K+ removal.  相似文献   

18.
The human heart Na channel (hH1) was expressed by transient transfection in tsA201 cells, and we examined the block of Na current by a series of symmetrical tetra-alkylammonium cations: tetramethylammonium (TMA), tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA). Internal TEA and TBA reduce single-channel current amplitudes while having little effect on single channel open times. The reduction in current amplitude is greater at more depolarized membrane potentials. Analysis of the voltage-dependence of single-channel current block indicates that TEA, TPrA and TBA traverse a fraction of 0.39, 0.52, and 0.46 of the membrane electric field to reach their binding sites. Rank potency determined from single-channel experiments indicates that block increases with the lengths of the alkyl side chains (TBA > TPrA > TEA > TMA). Internal TMA, TEA, TPrA, and TBA also reduce whole-cell Na currents in a voltage-dependent fashion with increasing block at more depolarized voltages, consistent with each compound binding to a site at a fractional distance of 0.43 within the membrane electric field. The correspondence between the voltage dependence of the block of single-channel and macroscopic currents indicates that the blockers do not distinguish open from closed channels. In support of this idea TPrA has no effect on deactivation kinetics, and therefore does not interfere with the closing of the activation gates. At concentrations that substantially reduce Na channel currents, TMA, TEA, and TPrA do not alter the rate of macroscopic current inactivation over a wide range of voltages (-50 to +80 mV). Our data suggest that TMA, TEA, and TPrA bind to a common site deep within the pore and block ion transport by a fast-block mechanism without affecting either activation or inactivation. By contrast, internal TBA and TPeA increase the apparent rate of inactivation of macroscopic currents, suggestive of a block with slower kinetics.  相似文献   

19.
In some preparations the time constant of Na current inactivation determined with two pulses (tau c) is larger over some range of potentials than that determined from the current decay during a single pulse (tau h), while in others tau c(V) and tau h(V) are the same. Myxicola giant axons obtained from specimens collected from coastal waters of northeastern North America display a tau c - tau h difference under all conditions we have tested. In these axons tau c(V) and tau h(V) are unchanged by reduction of Na current density, addition of K-channel blockers, or internal perfusion. Specimens of the same species, Myxicola infundibulum, collected from a different geographical location, the south coast of England, have been studied under internal perfusion with K as the major cation internally, with reduced external Na concentration and in the presence of K-channel blockers. In these axons tau c(V) and tau h(V) approximately superpose, raising the possibility that dramatic differences in Na current kinetics may not necessarily reflect basic differences in the organization of the Na channel gating machinery.  相似文献   

20.
In contrast to fast inactivation, the molecular basis of sodium (Na) channel slow inactivation is poorly understood. It has been suggested that structural rearrangements in the outer pore mediate slow inactivation of Na channels similar to C-type inactivation in potassium (K) channels. We probed the role of the outer ring of charge in inactivation gating by paired cysteine mutagenesis in the rat skeletal muscle Na channel (rNav1.4). The outer charged ring residues were substituted with cysteine, paired with cysteine mutants at other positions in the external pore, and coexpressed with rat brain beta1 in Xenopus oocytes. Dithiolthreitol (DTT) markedly increased the current in E403C+E758C double mutant, indicating the spontaneous formation of a disulfide bond and proximity of the alpha carbons of these residues of no more than 7 A. The redox catalyst Cu(II) (1,10-phenanthroline)3 (Cu(phe)3) reduced the peak current of double mutants (E403C+E758C, E403C+D1241C, E403C+D1532C, and D1241C+D1532C) at a rate proportional to the stimulation frequency. Voltage protocols that favored occupancy of slow inactivation states completely prevented Cu(phe)3 modification of outer charged ring paired mutants E403C+E758C, E403C+D1241C, and E403C+D1532C. In contrast, voltage protocols that favored slow inactivation did not prevent Cu(phe)3 modification of other double mutants such as E403C+W756C, E403C+W1239C, and E403C+W1531C. Our data suggest that slow inactivation of the Na channel is associated with a structural rearrangement of the outer ring of charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号