首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal responses controlling pupariation and adult eclosion in a citrus fruit fly,Dacus tsuneonis (Miyake), were studied to understand the winter biology of this species. When mature larvae were exposed to various temperature conditions, the highest percentage of pupariation was obtained at 15 °C, although the variance at this temperature was greater than at 20 °C or 25 °C. Pupariation occurred most rapidly at 20 °C and an alternating temperature with a mean of 15 °C. At constant 15 °C, pupae failed to emerge as adults. Pupae were characterized by a reduced respiration rate, which is typical of a diapausing pupa. When insects were stored at different temperatures for 45 days after pupariation, and then transferred to 25 °C, adult eclosion occurred earlier when the initial temperature was 10 °C than when it was 5 °C or 15 °C. Adult eclosion occurred most synchronously and pupal mortality was lowest when insects were stored at 15 °C for 90 days before incubation at 25 °C. These results strongly suggest thatD. tsuneonis enters a pupal diapause.  相似文献   

2.
Post-diapause development in male pupae of Mamestra configurata Wlk. was characterized by the appearance of large, transitory peaks of ecdysone (2.8 μg/g live wt) at day 8 and 20-hydroxyecdysone (2.2 μg/g) at day 12 which declined to low levels prior to adult eclosion at day 28.Treatment of diapausing pupae with 20-hydroxyecdysone elicited a progression of dose-dependent physiological and pathological effects, including termination of diapause, development, accelerated development, and accelerated development leading to malformation and death. At a dose of 7.5 μg 20-hydroxyecdysone/g, all treated pupae terminated diapause, developed with little mortality and produced a high proportion of morphologically perfect adults. However, there were no large peaks of ecdysone or 20-hydroxyecdysone in treated pupae, possibly due to feedback inhibition by 20-hydroxyecdysone.At doses greater than 7.5 μg/g, development was accelerated markedly, survival decreased precipitously (0% at 15 μg/g) and the proportion of malformed adults increased sharply. Pupae that received a lethal dose of 20-hydroxyecdysone died almost synchronously after undergoing accelerated development for 18–20 days, indicating that they encounter a common, hormone-induced developmental block. Pupae receiving 15 μg/g also showed no edcysone or 20-hydroxyecdysone peaks, but had a prolonged period of hyperecdysonism which likely caused their accelerated development and death.  相似文献   

3.
The effects of a granulosis virus from Sesamia nonagrioides were established in the larval, pupal, and adult stages. Different ages of larvae were compared as to their survival rates. Pupae deriving from diseased larvae had a sex ratio that deviated from the expected 1:1; in some of these pupae an incomplete pigmentation was noticed in abdominal segments. Adults deriving from inoculated larvae were less fertile, as measured by oviposition and by hatching rate. Offspring of inoculated parents had a greater incidence of the granulosis virus disease than did offspring of uninoculated parents.  相似文献   

4.
  1. Panolis flammea is an important pest whose populations intermittently outbreak in Europe. The species overwinters as pharate moths in the pupal stage in soil.
  2. Details on the metabolic activity and cold hardiness of P. flammea during the overwintering period have not been published. Therefore, we assessed O2 consumption and the supercooling point (SCP) of P. flammea in late November, mid-February, and mid-March and the influence of soil humidity under fluctuating temperatures and with brief exposures to two increased temperature regimes (10 and 20°C).
  3. The respiration pattern indicated diapause termination in mid-February. A threshold of 0.169 μl O2 h−1 mg−1 fresh weight indicated potentially activated pre-emerging moths. Drought increased respiration rates.
  4. The SCP was lowest in mid-February (−22.2°C) and was negatively correlated with pupal mass. The frost tolerance tended to increase with low substrate humidity, especially at the end of the overwintering period.
  5. Our results indicate that P. flammea requires more energy during dry and mild winters than in wet and cold winters. Winter diapause termination and post-diapause development may therefore be accelerated as environmental warming and drought increase.
  相似文献   

5.
Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin – good quality introduced host) and P. contorta (Alaskan seed origin – poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of large birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory.  相似文献   

6.
The resistance of diapausing (overwintering) and non‐diapausing (summer) Sarcophaga crassipalpis (Diptera: Sarcophagidae) pupae to inoculative freezing was examined. Although both types of pupae resisted inoculative freezing after 24‐h submergence in water, diapausing pupae were overall significantly more resistant than non‐diapausing pupae. Exposing the thin pupal cuticle by removing the ends of the puparial case eliminated the capacity of both pupal types to resist inoculative freezing, indicating that resistance to inoculative freezing resides with the puparium. Pupae submerged in surfactant solution were significantly less resistant to inoculative freezing than those submerged in water. Furthermore, the puparial water content of pupae submerged in surfactant solution was significantly greater than that of puparia from pupae submerged in water. Surfactant may have promoted inoculative freezing by facilitating the spread of water over the surface of and into the puparium, thereby creating bridges between external ice and pupal body fluids. Extracting puparial surface lipids with chloroform/methanol (2 : 1, v:v) decreased the resistance of non‐diapausing pupae to inoculative freezing but did not significantly affect that of diapausing pupae. This finding indicates that the puparium of diapausing pupae contains protection against inoculative freezing separate from its surface lipids. This barrier may be important in protecting the freezing‐intolerant overwintering pupae against inoculative freezing within their soil hibernaculum.  相似文献   

7.
Cases containing pupae of Hydropsychidae (Trichoptera) were collected from sampling-stations along the length of the Credit and Humber Rivers, Ont., and reared at 18°C. Mortality was high; about 33% of the cases produced adults. Up to 24% of collected cases had been infested with chironomid larvae. Within a station, emergence success and mortality due to chironomid infestation were about the same for the species of Hydropsyche Pictet present; Cheumatopsyche Wallengren suffered less chironomid-related mortality than Hydropsyche. There were significant between-station differences in chironomid-related mortality for H. sparna Ross, H. bronta Ross, H. morosa Hagen, and H. slossonae Banks. Chironomid-related mortality was lowest for pupae from upper Credit R. stations, highest for pupae collected from a lower Credit R. station. Pupae from all Humber R. stations suffered about the same amount of chironomid-related mortality. Chironomid infestation was significantly higher for prepupae than for pupae.  相似文献   

8.
Fecundity ofChironomus cucini increased linearly across a three-fold range of female pupal biomass. Females from a lake producing small pupae (Crystal Lake) had an average of 303 primary follicles, while larger pupae from Trout Lake had an average fecundity of 582. Pupae produced in Crystal Lake from larvae that received experimental food supplements were intermediate in size and fecundity. Pupal biomass explained 76% of the variation in fecundity. No difference in egg size was detected between pupae from the two lakes, and an average value of 2.1 g egg–1 was used to calculate the total biomass allocated to eggs in each of 79 females dissected. This measure of reproductive effort scaled isometrically with pupal mass. On average, females allocated 48% of their biomass to eggs and 52% to somatic tissues. A comparison of average male biomass to female somatic biomass across 12 populations indicated that the biomass difference between the sexes is a biased predictor of fecundity.  相似文献   

9.
The fall webworm, Hyphantria cunea (Drury), enters facultative diapause as a pupa in response to short-day conditions during autumn. Photoperiodic response curves showed that the critical day length for diapause induction was 14 h 30 min, 14 h 25 min and 13 h 30 min at 22, 25 and 28°C, respectively. The photoperiodic responses under non-24 h light–dark cycles demonstrated that night length played an essential role in the determination of diapause. Experiments using a short day length interrupted by a 1-h light pulse exhibited two troughs of diapause inhibition and the effect of diapause inhibition was greater in the early scotophase than in the late scotophase. The diapause-inducing short day lengths of 8, 10 and 12 h evoked greater intensities of diapause than did 13 and 14 h. Diapause can be terminated without exposure to chilling, but chilling at 5°C for 90 and 120 d significantly accelerated diapause development, reduced mortality, and synchronized adult emergence. Additionally, the potential for H. cunea from the temperate region (Qingdao) to emerge and overwinter under field conditions in subtropical regions (Nanchang) of China was evaluated. Pupae that were transferred to Nanchang in early July showed a 60% survival rate and extremely dispersed pupal period (from 12 to 82 days), suggesting that some pupae may undergo summer diapause. Diapausing temperate region pupae that were moved out-of-doors in Nanchang during October showed approximately 20% overwintering survival; moreover, those pupae that overwintered successfully emerged the next spring during a period when their host plants would be available. The results indicate that this moth has the potential to expand its range into subtropical regions of China.  相似文献   

10.
11.
The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.  相似文献   

12.
In this work, we study the suitability of using dead medfly Ceratitis capitata pupae, killed by heat- or cold-shock, for the mass rearing of Spalangia cameroni, a pupal parasitoid of key pests. 100% mortality of medfly pupae could be accomplished with cold-shock at –20°C for 60 min or with heat-shock at 55°C for 30 min. Neither parasitism percentage nor sex ratio of the offspring differed significantly among heat-shocked, cold-shocked and untreated pupae. In addition, there was no significant difference in the percentage of parasitoids that aborted (♂♂ or ♀♀) among pupal treatments. Some of the pupae were covered with peat because the third larval instar of the medfly buries itself before pupation. However, the buried pupae were not parasitised at a greater or lesser rate than those not covered with peat. The percentage of parasitism was also unaffected by whether the pupae had been killed recently or had been stored at between 4°C and 6°C over 15 or 30 days. The use of dead hosts and later storage permitted the following: (a) the use of hosts over long periods of time; (b) a rapid increase in parasitoid numbers and (c) the availability of pupae killed at the most suitable postpupation times for the production of parasitoids. Furthermore, in biological control projects, the use of dead parasitised pupae in the field avoids the risk of enhancing the pest and allows an increase in parasitism in the field through the use of pupae treated with cold- or heat-shock.  相似文献   

13.
【目的】本文旨在明确营养状况不同造成的梨小食心虫Grapholitha molesta(Busck)雌、雄蛹重量差异对其羽化的成虫产卵量、产卵期、寿命及下一代(F1)幼虫发育的影响。【方法】室内条件下,通过不同的饲养方法,获得个体重量不同的梨小食心虫雌、雄蛹,待其羽化交配后,记录其产卵量、产卵时间和成虫寿命;卵孵化前后,分别测量卵和初孵幼虫大小,计算卵孵化率,统计幼虫发育历期。【结果】雌蛹重量对梨小食心虫的成虫产卵量影响显著,其重量与产卵量呈正相关(y=15.505x-59.292);同一条件下,雌蛹与雄蛹重量也呈正相关(y=0.823x-0.538)。同时,雌蛹重量对成虫产卵期影响也较大,蛹重大的个体羽化的雌虫比蛹重小的个体羽化的雌虫产卵高峰期提前1 d;较重、中等和较轻蛹羽化出的雌虫个体每天产卵量高于10粒/雌的时间分别为9~10,7和5~6 d;产卵量高于5粒/雌的时间分别为12~13,9和6~7 d。而雄蛹重量对产卵量、雄成虫寿命影响没有明显影响。较轻的蛹羽化的雌成虫寿命比较重蛹羽化的雌成虫短2~3 d;而雄蛹重量对其羽化的雄成虫寿命影响没有明显规律。雌、雄蛹重量对其羽化成虫的卵孵化率、卵和初孵幼虫的大小影响均不显著,对F_1幼虫发育历期影响也不显著。【结论】梨小食心虫雌蛹重对羽化成虫的产卵量和产卵期等影响显著,田间防治时应注意在不同条件下完成发育的个体,尤其是雌虫,由于营养差异引起的个体大小对随后种群增长的影响。  相似文献   

14.
Consequences of climate change-driven shifts in the relative timing of spring activities of interacting species are insufficiently understood, especially for insects. We use a controlled experiment which simulates a trophic mismatch scenario in which lepidopteran larvae predominately feed on older leaves due to foliage developing faster than larvae growth rates. As a case study our experiment uses Orthosia cerasi, which is a widespread but declining woodland moth whose UK declines appear to be driven by warming temperatures. In the control experiment larvae are fed young oak Quercus robur leaves (bud burst stages six and seven), whilst in the treatment newly emerged larvae are fed young leaves but then gradually transition to feed on older leaves (post bud burst stage seven). We assess impacts on duration of the larval stage, pupal size and overwintering duration and survival. Larvae in the phenological mismatch treatment had a longer larval period, and smaller and lighter pupae. Larval diet did not carry over to influence emergence dates as earlier pupation of control larvae was balanced by an equivalent increase in the duration of the pupal stage. Increased time spent as larvae could increase predation rates from avian predators, whilst slowing the seasonal decline in food availability for those bird species. Reduced pupal size and weight are indicators of lower fecundity in emerging adults. Notably, we find that adults emerging from the mismatch treatment exhibited greater rates of abnormal vestigial wing development, which is likely to further reduce fitness. Trophic mismatches in which caterpillars have reduced availability of young leaves may thus contribute to the population declines observed in many woodland moth species due to increased mortality at larval stages, and adverse effects of early life conditions that reduce the reproductive success of emerging adults.  相似文献   

15.
Seasonal changes in the mean size of tsetse, Glossina pallidipes Austen, as indicated by wing vein length, were monitored during 1983-86 at Nguruman, southwestern Kenya. Changes in size of nulliparous females and wing fray category 1 males were shown to be correlated with the relative humidity 2 months before they were captured. Soil temperature when flies were in the pupal stage had much less effect. Size dependent mortality was demonstrated, with the mean size of flies emerging from pupae significantly less than that of field-caught flies. This mortality must occur at emergence, since there was no evidence of size-dependent mortality once the flies became available to the trap. Size was correlated with density-independent mortality acting on the parent population 2 months previously. It might therefore be possible to use size as an index of the intensity of such mortality. This could be useful when assessing the level of additional mortality required to suppress tsetse populations.  相似文献   

16.
Exposing larvae of the spruce budworm, Choristoneura fumiferana (Clemens), to sublethal ( 50% lethal dose) levels of Bacillus thuringiensis subsp. kurstaki at various stages of their development significantly increased development time to the pupal stage and reduced pupal size and number of eggs laid per female, but did not affect the proportion of embryonated eggs. The changes in larval development time, pupal weight and fecundity depended on the larval stage that was treated. Exposure of fourth instars delayed larval development and reduced only male pupal weights with no effects on fecundity. Exposure of sixth instars delayed larval development to a lesser extent than exposure of fourth instars but had a pronounced effect on weight of both male and female pupae. The effect on pupal weight was sex dependent, as males tended to be more affected than females. The reduction in male pupal weight did not appear to influence fecundity, because the effect of exposure was explained by the change in female pupal weight. Effects on larval growth and pupal weight were proportional to the dose that was ingested during exposure, and were observed at doses as low as one-tenth of the LD50. Ingestion of an LD50 caused a 29 or 45% delay in development of, respectively, female or male larvae when exposed as fourth instars and a 30% reduction in female pupal weight when larvae were exposed as sixth instars.  相似文献   

17.
To counteract water loss due to excretion, cuticular transpiration and respiration, various groups of arthropods have developed mechanisms for active uptake of water vapor from unsaturated air. In this study, active uptake capabilities and water loss rates were examined in the various developmental stages of the cat flea, Ctenocephalides felis. To determine critical equilibrium humidity, the lowest relative humidity at which active water uptake can occur, pre-desiccated immature and adult fleas were placed in a series of humidity regimes ranging from 44 to 93% RH. Active uptake occurred in larval stages at relative humidities above 53% and in pre-pupae at 75-93% RH. Pupae and adults did not demonstrate active uptake at any humidity. Optimal uptake for larvae occurred between 20 and 30 degrees C. When placed over Drierite (<10% RH), larval and adult stages demonstrated a higher rate of water loss than pre-pupal and pupal stages. Active water uptake is necessary to ensure proper development of the larvae of C. felis. Active uptake ceases after the larval-pupal ecdysis and it appears that adults have lost the ability to actively uptake water.  相似文献   

18.
Several apiaceous and two asteraceous species were tested for their suitability to support larval development of the carrot fly. Plants grown in pots or transplanted from seed beds into pots, were inoculated with a specific number of eggs. Pupae and non-pupated larvae were collected 6–7 wk after inoculation. Both the number and weights of pupae produced varied widely among the species. Cultivated carrots Daucus carota sativus often gave rise to only moderate numbers of pupae, but these invariably attained the highest weights. Pimpinella major was the only apiaceous plant tested that did not yield any carrot flies. The two asteraceous plants Cichorium intybus and Tanacetum vulgare failed to support larval development. Total carrot fly biomass produced per plant was influenced by both the host species and the root weight. Emergence rates of adult flies were positively correlated with pupal weights. Small individuals tended to have a longer total developmental time from egg to adult fly.  相似文献   

19.
Beauveria bassiana endophytically colonises corn (Zea mays) reducing tunneling from European corn borer (Ostrinia nubilalis). Endophytic colonisation of other plants by B. bassiana has been reported, and potentially, may reduce insect feeding on these plants. We evaluated the effects on larval growth and development, and mortality of different rates of dried, ground mycelia and water-soluble metabolites from fermentation broth culture of different isolates of B. bassiana incorporated into a synthetic diet and fed to neonate bollworm, Helicoverpa zea larvae. Development was delayed, weights of larvae were lower, and mortality was high for larvae fed the highest rates (1.0 and 5.0%, w/v) of mycelia incorporated diet compared to control. Insects fed diets containing mycelia of B. bassiana isolate 11-98 had the greatest mortality. Mortality was 100% for larvae fed 5% (w/v) mycelia incorporated diet of isolate 11-98, and 61% for isolate 3-00. For insects fed low rates (0.1 to 0.5%, w/v) of mycelia incorporated diet, mortality was lower, approximately 5% for isolate 11-98, and 5 to 14% for isolate 3-00. At the 0.1% (w/v) rate of mycelia incorporated diet, development occurred at an accelerated rate, compared to fungus-free controls, indicating increased nutrition in the lowest rate fungal diet. Mortality was low for all larvae fed diets containing spent fermentation broth of B. bassiana; however, development was delayed. Insects fed the highest rate (0.5%, v/v) of spent fermentation broth-amended diet had lower pupal weights, and a greater number of days to pupation than insects fed the lowest (0.1%, v/v) rate. Insects fed the 5% (v/v) rate of spent fermentation broth of isolates 11-98 and 3-00 had the longest days to pupation.  相似文献   

20.
To clarify differences in pupal cold hardiness and larval food consumption between overwintering and non‐overwintering generations of the common yellow swallowtail, Papilio machaon, we reared larvae from the Osaka population under photoperiods of 16 h light : 8 h dark (LD 16:8) (long day) or LD 12:12 (short day) at 20°C. We examined the relationship between food consumption and weight during the final larval stadium and pupae, and measured the pupal supercooling point (SCP). Although the ratio of assimilation to consumption did not differ significantly between photoperiods, the ratio of assimilation to pupal weight differed significantly between individuals reared under long and short days. All diapausing pupae were brown, whereas 56% of non‐diapausing pupae were green with the remainder brown. The mean pupal body length (L), dorsal width (W1) and lateral width (W2) were larger in non‐diapausing than in diapausing pupae, and the W1/L and W1/W2 ratios differed significantly between non‐diapausing and diapausing pupae. SCP was approximately –20°C and did not differ among pupae 5, 15 and 30 days after pupation under long‐day conditions. However, under short‐day conditions, mean SCP gradually decreased, stabilizing at approximately –24 to –25°C by 30 days after pupation. After freezing, some diapausing pupae emerged as adults, whereas all non‐diapausing pupae died. Both egestion and assimilation were greater under long‐day conditions. The results revealed that pupae of this papilionid exhibit seasonal polyphenism in physiological and morphological traits. Energy from food appears to be expended on increasing cold hardiness in the overwintering generation and on reproduction in the non‐overwintering generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号