首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We fabricated an on-chip capillary electrophoresis device for blood analysis. An on-chip capillary electrophoresis device was photolithographically fabricated on a glass chip. Alkaline phosphatase (ALP) was employed as a sample enzyme. Small amounts of enzyme in the mixture of other proteins were detected with the electrophoretically mediated microanalysis (EMMA) method. Fluorescein diphosphate was used as fluorogenic substrate. The detection of ALP activity was achieved with laser-induced fluorescence monitoring fluorescein that was produced in enzyme reaction in capillary. Several methods to reduce the adhesion of protein are also discussed.  相似文献   

2.
The need for urgent diagnoses has propelled the development of automated analyses that can be performed in a short time at reasonable cost. One such method is immunoaffinity capillary electrophoresis. This emerging hybrid technology employs two powerful techniques coupled on-line for the direct and rapid determination of analytes present in biological fluids. The first technique, immunoaffinity, is used for the selective extraction of a molecule present in a complex matrix, utilizing a microscale-format chamber affinity device. An analyte (affinity target) present in serum or urine is captured by an immobilized molecular recognition antibody molecule (affinity ligand) bound to a solid support constituent (glass beads or an appropriate porous structure) of a microchamber affinity device. The second technique, capillary electrophoresis, is used for the high-resolution analytical separation of the purified and concentrated affinity target material after elution from the microchamber affinity device. In this work, immunoaffinity capillary electrophoresis was developed for the identification and characterization of a single constituent of a complex matrix. Immunoreactive gonadotropin-releasing hormone was determined in serum and urine specimens derived from a normal individual and from a patient suffering from benign prostatic hyperplasia. Furthermore, the on-line immuno-separation system was coupled in tandem to mass spectrometry to obtain molecular mass information of the affinity isolated and CE separated neuropeptide. This hybrid immuno-analytical technology is simple, rapid, selective and sensitive. In addition, an attempt was also made to characterize other urinary constituents by CE–MS that may lead to marker activity in the urine of the diseased subject. The hyphenation of analytical techniques has proved valuable in enhancing their individual features. The future of bioanalysis using miniaturized affinity systems is discussed in this paper.  相似文献   

3.
Multiwavelength detection of laser induced fluorescence for dideoxynucleotide DNA sequencing with four different fluorophores and separation by capillary gel electrophoresis is described. A cryogenically cooled, low readout noise, 2-dimensional charge-coupled device is used as a detector for the on-line, on-column recording of emission spectra. The detection system has no moving parts and provides wavelength selectivity on a single detector device. The detection limit of fluorescently labeled oligonucleotides meets the high sensitivity requirements for capillary DNA sequencing largely due to the efficient operation of the CCD detector with a 94% duty cycle. Using the condition number as a selectivity criterion, multiwavelength detection provides better analytical selectivity than detection with four bandpass filters. Monte Carlo studies and analytical estimates show that base assignment errors are reduced with peak identification based on entire emission spectra. High-speed separation of sequencing samples and the treatment of the 2-dimensional electropherogram data is presented. Comparing the DNA sequence of a sample separated by slab gel electrophoresis with sequence from capillary gel electrophoresis and multiwavelength detection we find no significant difference in the amount of error attributable to the instrumentation.  相似文献   

4.
This review paper gives an overview of capillary electromigration methods used in the analysis of collagen. Analyses of the parent chains as well as of the bromcyane and collagenase fragments of collagens are presented. Methods include capillary zone electrophoresis, capillary gel electrophoresis, micellar electrokinetic chromatography as well as combinations of HPLC and capillary electrophoresis, and capillary electrophoresis with mass spectrometry.  相似文献   

5.
A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.  相似文献   

6.
L J Jin  J Ferrance  J P Landers 《BioTechniques》2001,31(6):1332-5, 1338-1340, 1342, passim
The promise of capillary electrophoresis (CE) for supplanting conventional methods in the clinical laboratory led to intense interest in this analytical tool a decade ago. Since then, a number of clinical applications have been defined along with those that have impacted the pharmaceutical, environmental, and forensic arenas. Concurrent with the development of CE applications was the emergence of electrophoresis in the microchip format. The main attraction of this platform, the ability to execute high-resolution separations in a few hundred seconds, was not its only attribute. The capability for parallel processing of separations was complemented by the potentialfor integrating sample preparation into the same device. This Review highlights recent progress towards CE and microchip electrophoresis as clinical diagnostic tools, with literature coverage from 1996 to 2000.  相似文献   

7.
Capillary electrophoresis (CE) is a convenient, fast and non-radioactive method with possibilities for automatization. To analyse single-stranded DNA molecules in a more automated way, we developed a heating device to melt double-stranded DNA fragments in the capillary during electrophoresis. In this study we used this device to obtain single-stranded DNA, necessary for the detection of point mutations in DNA using the single-strand conformation polymorphism technique. Results show that double-stranded DNA molecules can be melted on-line into single-stranded DNA molecules, although not for 100%. In an attempt to find universal electrophoretic conditions for the analysis of single-stranded DNA, we investigated the influence of several parameters on the yield of single-stranded DNA molecules and on the resolution of the single-stranded DNA peaks. We demonstrate that this heating device is a technical adjustment of CE which contributes to more automated analyses of DNA fragments.  相似文献   

8.
The LIGA (Lithographie Galvanoformung Abformung) process using synchrotron radiation lithography is applied to the microfabrication of capillary array electrophoresis (CAE) device. Laser-induced fluorescence detection system for the CAE device has been constructed by the modification of laser confocal fluorescence microscopy. DNA molecules were detected during migrating in the microchannels filled with polymer separation matrices under electric field to optimize the separation conditions for DNA analysis. Based on this observation, we demonstrated that microfabricated CAE device is realized the fast separation of DNA.  相似文献   

9.
The performance of two homemade fluorescence-induced capillary electrophoresis detectors, one based on light-emitting diode (LED) as the excitation source and a charge-coupled device (CCD) photodetector and the other based on a commercial luminescence spectrometer (Xe lamp) as the excitation source and a photomultiplier tube as a detector, were compared for the determination of fluorescent proteins R-phycoerythrin and B-phycoerythrin. Both devices use commercially available, reasonably priced optical components that can be used by nonexperts. After fine optimization of several optical and separation parameters in both devices, a zone capillary electrophoresis methodology was achieved with 50mM borate buffer (pH 8.4) and 10mM phytic acid for the determination of two phycobiliproteins. Detection limits of 0.50 and 0.64microg/ml for R-phycoerythrin and B-phycoerythrin, respectively, were achieved by using the LED-induced fluorescence capillary electrophoresis (LED-IF-CE) system, and corresponding detection limits of 2.73 and 2.16microg/ml were achieved by using the Xe lamp-IF-CE system. Analytical performance and other parameters, such as cost and potential to miniaturization, are compared for both devices.  相似文献   

10.
Microchip electrophoresis: a method for high-speed SNP detection   总被引:2,自引:1,他引:2  
As a trial practical application, we have applied optimized microfabricated electrophoresis devices, combined with enzymatic mutation detection methods, to the determination of single nucleotide polymorphism (SNP) sites in the p53 suppressor gene. Using clinical samples, we have achieved robust assays with quality factors as good as conventional electrophoresis in ~100 s. This is 10 and 50 times faster than capillary and slab gel electrophoresis, respectively. The method was highly accurate with an average error of mutation site measurement of only ±5 bp. No clean-up of the digestion mixtures was needed prior to injection. This greatly simplifies sample handling relative to capillary instruments, which is important for high-throughput screening applications. Following identification, absolute mutation determination of the screened samples was achieved in a second microdevice optimized for four-color DNA sequencing. Total run time was 25 min in this second device and sequencing data were in full agreement with ABI Prism® 377 sequencing runs which required 3.5 h. The tandem application of microdevices for location then full characterization of SNPs appears to confirm many of the improvements claimed for future application of microdevices in practical scaled screening for mutational analysis.  相似文献   

11.
A micropreparative capillary electrophoresis apparatus equipped with a new type of fraction collection device is described: solutes, such as proteins, are adsorbed onto a moving blotting membrane (for instance a polyvinylidene difluoride membrane) as they migrate electrophoretically out of the capillary. The adsorbed proteins are visualized by conventional protein staining methods or by fluorescent labeling. Specific identification of separated components by an immunological technique is demonstrated. The method also offers the potential to analyze proteins and peptides collected on the membrane by gas phase sequencing and mass spectrometry.  相似文献   

12.
We present a top down separation platform for yeast ribosomal proteins using affinity chromatography and capillary electrophoresis which is designed to allow deposition of proteins onto a substrate. FLAG tagged ribosomes were affinity purified, and rRNA acid precipitation was performed on the ribosomes followed by capillary electrophoresis to separate the ribosomal proteins. Over 26 peaks were detected with excellent reproducibility (<0.5% RSD migration time). This is the first reported separation of eukaryotic ribosomal proteins using capillary electrophoresis. The two stages in this workflow, affinity chromatography and capillary electrophoresis, share the advantages that they are fast, flexible and have small sample requirements in comparison to more commonly used techniques. This method is a remarkably quick route from cell to separation that has the potential to be coupled to high throughput readout platforms for studies of the ribosomal proteome.  相似文献   

13.
For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.  相似文献   

14.
Standard SDS-PAGE analysis of a pegylated protein was able to confirm an increase in its molecular size after reaction with an activated polyethylene glycol (PEG) but could do little to identify the extent of pegylation or to support characterization of the consistency of the modified protein. In this article, we demonstrate the utility of the capillary electrophoresis technology (using a microfluidic system) in analyzing the pegylation pattern of a recombinant protein over a range of 1-12 PEGs per polypeptide. Confirmatory data from mass spectrometry analysis of pegylated adducts are also presented. These allowed independent confirmation of the extent of pegylation. This electrophoretic analysis gives a robust, reproducible, and direct characterization of PEG adducts. We found that traditional estimation of PEG adducts by an indirect colorimetric (trinitrobenzene sulfonic acid) reaction, which detects loss of free amino groups, was quite erroneous for the recombinant protein in our study as well as several commercially available pegylated proteins. These results support the use of this capillary electrophoresis device for precise characterization of pegylated proteins.  相似文献   

15.
Microfabricated capillary array electrophoresis (microCAE) microchannel plates are the next generation of bioanalytical separation devices. To fully exploit the capabilities of microCAE devices, supporting technology such as robotic sample loading, gel loading, microplate washing, and data analysis must be developed. Here, we describe a device for loading gel into radial capillary array electrophoresis microplates and for plate washing and drying. The microplates are locked into a loading module, and high-pressure helium is used to drive aqueous separation media or wash solutions into the microchannels through fixtures connected to the central anode reservoir. Microplates are rapidly (30 s to 5 min) loaded with separation media, such as 3%-4.8% linear polyacrylamide or 0.7%-3.0% hydroxyethyl cellulose, for electrophoresis. The effective and rapid gel-filling and plate-cleaning methods together with short electrophoretic analysis times (2-30 min) make microCAE systems versatile and powerful nucleic acid analysis platforms.  相似文献   

16.
The combination of capillary isotachophoresis and capillary zone electrophoresis may enhance greatly the performance of analytical capillary electrophoresis with respect to both separation power and the concentration sensitivity. The concentrating effects and the separation power of isotachophoresis allow the analysis of diluted samples and the elimination of interferences due to bulk components. The separation process of zone electrophoresis enables one to resolve the stack of trace analytes and detect the resulting individual zones with high sensitivity. The transition of isotachophoresis into zone electrophoresis plays the key role in the overall performance of this hyphenated technique. This article describes the dynamics of the conversion of isotachophoresis into zone electrophoretic mode and shows that the key role is played by the segments of the leading and terminating zones from the isotachophoretic stage. The magnitude of these segments directly effects the detection time as well as the separation width of the peaks of analytes. It is shown that these effects are also important in the analyses by capillary zone electrophoresis where isotachophoresis is induced by the sample itself. Finally, the paper presents a list of recommended, user-friendly, electrolyte systems which enable one to simply predict the performance of the combination isotachophoresis-zone electrophoresis.  相似文献   

17.
本研究采用毛细管电泳技术,构建并优化了荧光标记复合PCR同时扩增多个微卫星位点。主要过程为:首先根据设计所扩增微卫星位点的期望长度,将9个微卫星位点分成两组,5个位点用FAM(蓝色)标记,4个位点用HEX(绿色)标记;两种荧光类型分组优化,用琼脂糖胶电泳检测。其次,荧光标记的复合PCR扩增8个中华绒螯蟹样品的9个微卫星位点,采用ABI3730xl毛细管电泳检测,以ROX500(红色)为长度标准物,结果经Genemapper3.5软件 分析,检测结果表明毛细管电泳检测荧光标记复合PCR产物不仅精确读取微卫星位点的长度(分辨率高达1bp),还能区分微卫星位点复制时滑链所引起的“回声斑”;调整各微卫星位点引物比列使所有位点扩增强弱均匀。最后,逐一检测复合PCR基本参数(dNTP浓度、 PCR程序和模版DNA用量)对复合PCR产物的影响,优化PCR。结果表明通过毛细管电泳检测荧光标记复合PCR产物来读取微卫星位点的基因型具有精确性、高效性和稳定性。  相似文献   

18.
This review gives an overview of different separation strategies with nanomaterials and their use in capillary electrophoresis (CE) and capillary electrochromatography, as well as in microchip electrophoresis, including metal and metal oxide nanoparticles, carbon nanotubes, fullerene and polymer nanoparticles, as well as silica nanoparticles. The paper highlights the new developments and innovative applications of nanoparticles as pseudostationary phases or immobilized on the capillary surface for CE separation. The separation and characterization of target nanoparticles with different sizes by CE are reviewed likewise.  相似文献   

19.
This review gives an overview of different separation strategies with nanomaterials and their use in capillary electrophoresis (CE) and capillary electrochromatography, as well as in microchip electrophoresis, including metal and metal oxide nanoparticles, carbon nanotubes, fullerene and polymer nanoparticles, as well as silica nanoparticles. The paper highlights the new developments and innovative applications of nanoparticles as pseudostationary phases or immobilized on the capillary surface for CE separation. The separation and characterization of target nanoparticles with different sizes by CE are reviewed likewise.  相似文献   

20.
Capillary affinity gel electrophoresis is a new technique for the recognition of the specific DNA base and/or sequence. This technology is also applicable to the characterization of binding properties of DNA-based drugs, chiral separation, and the selective separation of antibody mimetics using imprinted polymers. This article reviews the present state of studies on the capillary affinity gel electrophoresis, including the principle, theory, methods, and applications of this technology. The great potential of capillary affinity gel electrophoresis for the detection of the mutation onDNA is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号