首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oleamide (cis-9-octadecenamide) is a member of an emerging class of lipid-signaling molecules, the primary fatty acid amides. A growing body of evidence indicates that oleamide mediates fundamental neurochemical processes including sleep, thermoregulation, and nociception. Nevertheless, the mechanism for oleamide biosynthesis remains unknown. The leading hypothesis holds that oleamide is synthesized from oleoylglycine via the actions of the peptide amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The present study investigated this hypothesis using pharmacologic treatments, physiologic assessments, and measurements of serum oleamide levels using a newly developed enzyme-linked immunosorbant assay (ELISA). Oleamide and oleoylglycine both induced profound hypothermia and decreased locomotion, over equivalent dose ranges and time courses, whereas, closely related compounds, stearamide and oleic acid, were essentially without effect. While the biologic actions of oleamide and oleoylglycine were equivalent, the two compounds differed dramatically with respect to their effects on serum levels of oleamide. Oleamide administration (80 mg/kg) elevated blood-borne oleamide by eight-fold, whereas, the same dose of oleoylglycine had no effect on circulating oleamide levels. In addition, pretreatment with the established PAM inhibitor, disulfiram, produced modest reductions in the hypothermic responses to both oleoylglycine and oleamide, suggesting that the effects of disulfiram were not mediated through inhibition of PAM and a resulting decrease in the formation of oleamide from oleoylglycine. Collectively, these findings raise the possibilities that: (1) oleoylglycine possesses biologic activity that is independent of its conversion to oleamide and (2) the increased availability of oleoylglycine as a potential substrate does not drive the biosynthesis of oleamide.  相似文献   

2.
Oleamide (cis-9-octadecenamide) is a member of an emerging class of lipid-signaling molecules, the primary fatty acid amides. A growing body of evidence indicates that oleamide mediates fundamental neurochemical processes including sleep, thermoregulation, and nociception. Nevertheless, the mechanism for oleamide biosynthesis remains unknown. The leading hypothesis holds that oleamide is synthesized from oleoylglycine via the actions of the peptide amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The present study investigated this hypothesis using pharmacologic treatments, physiologic assessments, and measurements of serum oleamide levels using a newly developed enzyme-linked immunosorbant assay (ELISA). Oleamide and oleoylglycine both induced profound hypothermia and decreased locomotion, over equivalent dose ranges and time courses, whereas, closely related compounds, stearamide and oleic acid, were essentially without effect. While the biologic actions of oleamide and oleoylglycine were equivalent, the two compounds differed dramatically with respect to their effects on serum levels of oleamide. Oleamide administration (80mg/kg) elevated blood-borne oleamide by eight-fold, whereas, the same dose of oleoylglycine had no effect on circulating oleamide levels. In addition, pretreatment with the established PAM inhibitor, disulfiram, produced modest reductions in the hypothermic responses to both oleoylglycine and oleamide, suggesting that the effects of disulfiram were not mediated through inhibition of PAM and a resulting decrease in the formation of oleamide from oleoylglycine. Collectively, these findings raise the possibilities that: (1) oleoylglycine possesses biologic activity that is independent of its conversion to oleamide and (2) the increased availability of oleoylglycine as a potential substrate does not drive the biosynthesis of oleamide.  相似文献   

3.
The isolation of a new lipoxygenase-like (LOX-like) enzyme from Pseudomonas 42A2 and its characterization is described. The enzyme, located in the periplasm of the cell, which contained 0.55 mol of Fe2+ per mol of protein, is monomeric and has a molecular mass of 45 kDa. In the presence of oxygen, the enzyme converts oleic acid into (E)-10-hydroperoxy-8-octadecenoic acid (HPOD), which decomposes to the corresponding (E)-10-hydroxy-8-octadecenoic acid (HOD). The absolute configuration of this acid was determined as S on the basis of exciton-coupled CD data, and specific rotation and NMR analysis of the corresponding p -bromobenzoate derivative. The reaction in vivo leads to the dihydroxy derivative (E)-7,10-dihydroxy-8-octadecenoic acid (DHOD), so that the three hydroxy-fatty acids can be isolated from the culture medium. The activity of the enzyme was optimal between 25 and 30 degrees C and 44% of its activity still remained at 55 degrees C. Its optimal pH is 8.5-9; and the presence of magnesium ions increased LOX activity by 1.5. The activity of the LOX is highest in unsaturated fatty acids containing double bonds in position 9 (oleic, linoleic and linolenic acids), linoleic acid being preferred (100% activity) over linolenic (60.4%) and oleic acids (46%). However, kinetic studies showed that the affinity of the enzyme is similar for the three substrates.  相似文献   

4.
To verify whether the sleep-inducing properties of oleamide were related to its ability to perturb membrane homeoviscosity, affecting 5-HT(2A) receptors, we compared the effects of oleamide and oleic acid, the latter lacking both the sleep-inducing effect and the action on 5-HT(2A) receptors. In binding studies the two compounds did not directly interact with rat brain cortex 5-HT(2A) receptors, nor did they increase the affinity of a 5-HT(2A) agonist, either in vitro or ex vivo. They had similar fluidizing effects, in vitro at high concentrations (>/=10 microM), and ex vivo after a dose of 100 mg/kg, and they reduced locomotor activity with similar potency. There thus appears to be no causal relationship between the fluidizing effects of oleamide and its sleep-inducing properties.  相似文献   

5.
The fatty-acid primary amide, oleamide, is a novel signaling molecule whose mechanism of biosynthesis is unknown. Recently, the N(18)TG(2) cell line was shown to synthesize oleamide from oleic acid, thereby demonstrating that these cells contain the necessary catalytic activities for generating the fatty-acid primary amide. The ability of peptide alpha-amidating enzyme, peptidylglycine-alpha-amidating monooxygenase (PAM; EC 1.14.17.3), to catalyze the formation of oleamide from oleoylglycine in vitro suggests this as a function for the enzyme in vivo. This investigation shows that N(18)TG(2) cells, in fact, express PAM and that cellular differentiation dramatically increases this expression. PAM expression was confirmed by the detection of PAM mRNA, PAM protein, and enzymatic activity that exhibits the functional characteristics of PAM isolated from mammalian neuroendocrine tissues. The regulated expression of PAM in N(18)TG(2) cells is consistent with the proposed role of PAM in the biosynthesis of fatty-acid primary amides and further establishes this cell line as a model for studying the pathway.  相似文献   

6.
Y Zhang  G L Mills  M G Nair 《Phytomedicine》2003,10(5):386-390
In the search for bioactive natural products from edible mushrooms, we have investigated the fruiting body of Agrocybe aegerita. The methanol extract of this mushroom yielded a fatty acid fraction (FAF), along with palmitic acid (1), ergosterol (2), 5,8-epidioxy-ergosta-6,22-dien-3beta-ol (3), mannitol (4) and trehalose (5). The composition of FAF was confirmed by GC-MS and by comparison to the retention values of authentic samples of palmitic, stearic, oleic and linoleic acids. The structures of 1-5 were established using spectroscopic methods. FAF and compounds 1-3 showed cyclooxygenase (COX) enzyme inhibitory and antioxidant activities. The inhibition values of liposome peroxidation by FAF, compounds 1 and 2 at 100 microg/ml were 75, 45, and 43%, respectively. The inhibition values of COX-I enzyme by FAF and 1-3 at 100 microg/ml were 80, 39, 19, and 57%, respectively. Similarly, COX-II enzyme activity was reduced by FAF and 1-3 at 100 microg/ml with values of 88, 45, 28, and 22%, respectively. Compounds 1, 3 and fatty acids were isolated here for the first time from the fruiting body of A. aegerita.  相似文献   

7.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

8.
A recombinant enzyme from Lysinibacillus fusiformis was expressed, purified, and identified as an oleate hydratase because the hydration activity of the enzyme was the highest for oleic acid (with a k (cat) of 850?min(-1) and a K (m) of 540?μM), followed by palmitoleic acid, γ-linolenic acid, linoleic acid, myristoleic acid, and α-linolenic acid. The optimal reaction conditions for the enzymatic production of 10-hydroxystearic acid were pH 6.5, 35?°C, 4% (v/v) ethanol, 2,500?U ml(-1) (8.3?mg?ml(-1)) of enzyme, and 40?g l(-1) oleic acid. Under these conditions, 40?g l(-1) (142?mM) oleic acid was converted into 40?g l(-1) (133?mM) 10-hydroxystearic acid for 150?min, with a molar yield of 94% and a productivity of 16?g l(-1)?h(-1), and olive oil hydrolyzate containing 40?g l(-1) oleic acid was converted into 40?g l(-1) 10-hydroxystearic acid for 300?min, with a productivity of 8?g l(-1)?h(-1).  相似文献   

9.
Oleamide is an endogenous sleep-inducing lipid that has been isolated from the cerebrospinal fluid of sleep-deprived mammals. Oleamide is the best-understood member of the primary fatty acid amide family. One key unanswered question regarding oleamide and all other primary acid amides is the pathway by which these molecules are produced. One proposed pathway involves oleoyl-CoA and N-oleoylglycine as intermediates: oleic acid --> oleoyl-CoA --> N-oleoylglycine --> oleamide. The first and third reactions are known reactions, catalyzed by acyl-CoA synthetase and peptidylglycine alpha-amidating monooxygenase (PAM). Oleoyl-CoA formation from oleic acid has been demonstrated in vitro and in vivo while, to date, N-oleoylglycine cleavage to oleamide has been established only in vitro. PAM catalyzes the final step in alpha-amidated peptide biosynthesis, and its proposed role in primary fatty acid amide biosynthesis has been controversial. Mouse neuroblastoma N(18)TG(2) cells are an excellent model system for the study of oleamide biosynthesis because these cells convert [(14)C]-oleic acid to [(14)C]-oleamide and express PAM in a regulated fashion. We report herein that growth of the N(18)TG(2) cells in the presence of [(14)C]-oleic acid under conditions known to stimulate PAM expression generates an increase in [(14)C]-oleamide or in the presence of a PAM inhibitor generates [(14)C]-N-oleoylglycine. This represents the first identification of N-oleoylglycine from a biological source. In addition, N(18)TG(2) cell growth in the presence of N-oleoylglycine yields oleamide. These results strongly indicate that N-oleoylglycine is an intermediate in oleamide biosynthesis and provide further evidence that PAM does have a role in primary fatty acid amide production in vivo.  相似文献   

10.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

11.
A putative fatty acid hydratase from Stenotrophomonas maltophilia was cloned and expressed in Escherichia coli. The recombinant enzyme showed the highest hydration activity for oleic acid among the fatty acids tested, indicating that the enzyme is an oleate hydratase. The optimal conditions for the production of 10-hydroxystearic acid from oleic acid using whole cells of recombinant E. coli containing the oleate hydratase were pH 6.5, 35°C, 0.05% (w/v) Tween 40, 10 g l(-1) cells, and 50 g l(-1) oleic acid. Under these conditions, whole recombinant cells produced 49 g l(-1) 10-hydroxystearic acid for 4 h, with a conversion yield of 98% (w/w), a volumetric productivity of 12.3 g l(-1) h(-1), and a specific productivity of 1.23 g g-cells(-1) h(-1), which were 18%, 2.5-, and 2.5-fold higher than those of whole wild-type S. maltophilia cells, respectively. This is the first report of 10-hydroxystearic acid production using recombinant cells and the concentration and productivity are the highest reported thus far among cells.  相似文献   

12.
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.  相似文献   

13.
Acylation of lysolecithin in the intestinal mucosa of rats   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The presence of an active acyl-CoA-lysolecithin (1-acylglycerophosphorylcholine) acyltransferase was demonstrated in rat intestinal mucosa. 2. ATP and CoA were necessary for the incorporation of free [1-(14)C]oleic acid into lecithin (phosphatidylcholine). 3. The reaction was about 20 times as fast with [1-(14)C]oleoyl-CoA as with free oleic acid, CoA and ATP. 4. With 1-acylglycerophosphorylcholine as the acceptor, both oleic acid and palmitic acid were incorporated into the beta-position of lecithin; the incorporation of palmitic acid was 60% of that of oleic acid. 5. Of the various analogues of lysolecithin tested as acyl acceptors from [1-(14)C]oleoyl CoA, a lysolecithin with a long-chain fatty acid at the 1-position was most efficient. 6. The enzyme was mostly present in the brush-border-free particulate fraction of the intestinal mucosa. 7. Of the various tissues of rats tested for the activity, intestinal mucosa was found to be the most active, with testes, liver, kidneys and spleen following it in decreasing order.  相似文献   

14.
High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.  相似文献   

15.
The activity of chymase was markedly inhibited by fatty acids with carbon chain lengths of 14-22 at doses greater than 0.02 microM, irrespective of the number of double bonds. Cis acids with a carbon chain length of 18, such as stearic acid, oleic acid, linoleic acid, and linolenic acid were potent inhibitors, whereas the trans isomer of oleic acid, elaidic acid, showed less inhibitory activity. The extent of inhibition by oleyl alcohol was almost the same as that by oleic acid, suggesting that the acid moiety itself was not necessary for the inhibition; but a fatty acid with a terminal functional amide, oleamide, showed little inhibitory activity. The inhibition was noncompetitive and was reversible, and the Ki value of oleic acid was 2.7 microM. Stearic acid and oleic acid inhibited all chymotrypsin-type serine endopeptidases tested. The ID50 values of these fatty acids for atypical mast cell protease were higher than those for the other chymotrypsin-type serine endopeptidases tested. Other proteases, such as papain, trypsin, collagenase, and carboxypeptidase A, except cathespin D, were not affected by stearic or oleic acid.  相似文献   

16.
In the frog Rana temporaria L., oleamide solution (10 μmole/L) applied to the isolated basal surface of the skin augmented the short-circuit current (SCC) from 59.8 ± 2.5 to 78.2 ± 1.4 μA/cm2. When applied to the serous membrane of the urinary bladder, oleamide (1 μmole/L) induced more than a 30-fold increase in osmotic water permeability. The addition of argininevasotocin against the background of oleamide further increased SCC across the skin and osmotic water permeability in the bladder. In Wistar rats, intraperitoneal injection of oleamide (0.1 μmole/L per 100 g of body weight) to non-anesthetized animals after water load reduced diuresis by 22% and increased solute-free water reabsorption and urinary sodium excretion by 31% and 55%, respectively, but did not affect urinary potassium excretion. These findings provide evidence of the similarity between the effects of oleamide and nonapeptide neurohypophyseal hormones on water and ion transport in epithelial cells of osmoregulatory organs in vertebrates.  相似文献   

17.
The elucidation of the mechanism of phospholipase A2-induced inactivation of the condensation enzyme provided evidence concerning the important role of lipid-enzyme interactions in maintaining the condensation activity in swine cerebral microsomes. A quantitative analysis of fatty acid release by phospholipase A2 from the microsomal membrane revealed that only 5 nmol of free fatty acid per mg microsomal protein was released, including oleic acid and arachidonic acid, by treatment with 0.4 unit of phospholipase A2 per mg microsomal protein for 15 s at 23 degrees C. Under these conditions, the condensation activity for endogenous 16:0-CoA and 20:4-CoA decreased to half and that for exogenous 20:0-CoA decreased to 75%. However, the addition of free fatty acids and lysophospholipids or a mixture of them at 5-10 nmol/mg protein did not change the condensation activity for endogenous 16:0-CoA and 20:4-CoA, or for exogenous 20:0-CoA. These results indicated that phospholipase A2 inhibited the condensation activity by acting directly on phospholipids that are indispensable to maintaining the function of the condensation enzyme. The Arrhenius plot for the condensation of endogenous 16:0-CoA showed a break at around 16 degrees C, whereas no break of the plot was observed for the condensation of 20:0-CoA and 20:4-CoA. The activation energy for the condensation of 16:0-CoA and 20:4-CoA was decreased by the addition of free fatty acids such as oleic acid and stearic acid, with disappearance of the Arrhenius break for 16:0-CoA condensation, whereas the activation energy for the condensation of 20:0-CoA was not changed. These results suggest that the type of lipid-protein interaction in the condensation enzyme for 20:0-CoA is different from that for 16:0-CoA and 20:4-CoA.  相似文献   

18.
宇花91是青岛农业大学选育的高油酸花生新品种。以普通油酸含量品种鲁花11号为母本,F435型高油酸花生品种开农1715为父本配置杂交组合。利用PCR产物测序法筛选获得F_1代真杂种,对F_2代单株提取叶片基因组DNA,利用PCR产物测序法筛选基因型纯合的单株个体。对当代收获的单株籽粒利用近红外法多粒模型测定油酸、亚油酸含量,筛选油酸含量在80%以上且油酸亚油酸比值在10.0以上的单株种植成株行,随后利用系谱法进行选择育种。宇花91荚果为普通型小果,网纹较细、较明显,百果重148.06 g,百仁重63.31 g,果皮薄,出米率75.15%。籽仁长椭圆形,种皮粉红色、无裂纹,内种皮白色。籽仁蛋白质含量26.57%,脂肪含量52.72%,油酸含量80.40%,亚油酸含量2.50%,棕榈酸含量5.57%,油酸亚油酸比值32.16。苗期生长旺盛,封垄早,结果集中,中抗叶斑病和青枯病。2017年参加山东省夏播多点试验,平均荚果产量215.79 kg/667 m~2,比对照花育20号增产15.27%;平均籽仁产量157.33kg/667m~2,比对照花育20号增产21.64%。2018年通过国家花生品种登记,登记号:GPD花生(2018) 370210,适于在山东花生产区种植。  相似文献   

19.
Leptospira interrogans serotype patoc exhibited an increasing growth response when cultivated in media containing from 50 to 250 mug of sodium oleate per ml. Leptospiral growth in the presence of 250 mug of sodium oleate per ml was as good as that in the basal medium which contained 700 mug of oleic acid (in Tween 80) per ml. When positional isomers of oleic acid (9-octadecenoic acid) were present at a concentration of 200 mug/ml, the 2- and 8-isomers were not readily utilized, whereas the 3-, 4-, 6-, 11-, 15-, and 16-isomers gave a growth response equivalent to that of oleic acid, i.e., the 9-isomer. The 5-, 7-, 10-, 12-, 13-, 14-, and 17-isomers of octadecenoic acid induced growth responses which differed in magnitude but were intermediate to those of 2-18:1 and 3-18:1. When 200 mug of either 2- or 3-octadecenoic acid per ml was added in addition to 200 mug of 9-18:1 alone; 400 mug of 9-18:1 alone per ml inhibited growth of this organism. The growth response of leptospira to octadecenoic acids differed from that of mammalian cells, suggesting the presence of different enzymes in the two systems for the utilization of these substrates.  相似文献   

20.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号