首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons acquire a unique cell-type dependent morphology during development that is critical for their function in a neural circuit. The process involves a neuron sending out an axon that grows in a directed fashion to its target, and the elaboration of multiple, branched dendrites. The ultimate morphology of the neuron is sculpted by factors in the environment that act directly or indirectly to influence the behavior of the growing axon and dendrites. The output neuron of the retina, the retinal ganglion cell (RGC), has served as a useful model for the identification of molecular signals that control neuronal morphogenesis, because the entire development of the neuron, from the initiation of neurites to the establishment of synapses, is accessible for experimental manipulation and visualization. In this review we discuss data which argue that the visual system uses a limited number of signals to control RGC morphogenesis, with single molecules being reused multiple times to control distinct events in axon and dendrite outgrowth.  相似文献   

2.
Neuronal polarization: the cytoskeleton leads the way   总被引:1,自引:0,他引:1  
The morphology of cells is key to their function. Neurons extend a long axon and several shorter dendrites to transmit signals in the nervous system. This process of neuronal polarization is driven by the cytoskeleton. The first and decisive event during neuronal polarization is the specification of the axon. Distinct cytoskeletal dynamics and organization of the cytoskeleton determine the future axon while the other neurites become dendrites. Here, we will review how the cytoskeleton and its effectors drive axon specification and neuronal polarization. First, the role of the actin cytoskeleton and microtubules in axon specification will be presented. Then, we will discuss the role of the centrosome in axon determination as well as how microtubules are generated in axons and dendrites. Finally, we will discuss potential mechanisms leading to axon specification, such as positive feedback loops that could be a coordinated interaction between actin and microtubules. Together, this review will present the recent advances on the role of the microtubules and the actin cytoskeleton during neuronal polarization. We will pinpoint the upcoming challenges to gain a better understanding of neuronal polarization on a fundamental intracellular level. Finally, we will outline how reactivation of the intrinsic polarization program may help to induce axon regeneration after CNS injury.  相似文献   

3.
Microtubule-associated proteins and the determination of neuronal form   总被引:5,自引:0,他引:5  
1. The assembly of microtubules is essential for the maintenance of both the extension and the radial symmetry of axons and dendrites. Microtubule-associated proteins (MAPs) are implicated in this function because they promote tubulin polymerization and because they appear to be involved in cross-linking microtubules in the neuritic cytoplasm. 2. In a variety of species high molecular weight MAP2 is found only in dendrites and MAP tau is found only is axons, indicating that certain MAPs are associated with specific aspects of neuronal morphology. 3. All neuronal MAPs that have been studied are under strong developmental regulation with either their form or abundance changing between developing and adult brain. In both rat and Xenopus the change from "early" to "late" MAP forms occurs concurrently with the cessation of axon and dendrite growth and the maturation of neuronal morphology. 4. In situations where neuronal growth persists in the adult, such as retinal photoreceptor cells and the olfactory system, "early" MAPs continue to be expressed in the adult brain. 5. These results implicate MAPs in neuronal morphogenesis and suggest that "early" MAPs are involved in axon and dendrite growth whereas the "late" MAPs are involved in the stabilization of their mature form.  相似文献   

4.
5.
Lee SH 《Molecules and cells》2005,20(2):256-262
The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-beta-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, beta-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.  相似文献   

6.
The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Important progress has been made toward the identification of the molecular mechanisms regulating neuronal polarization using primarily in vitro approaches such as dissociated culture of rodent hippocampal neurons. The predominant view emerging from this paradigm is that neuronal polarization is initiated by intrinsic activation of signaling pathways underlying the initial break in neuronal symmetry that precedes the future asymmetric growth of the axon. Recent evidence shows that (i) axon-dendrite polarization is specified when neurons engage migration in vivo, (ii) that a kinase pathway defined by LKB1and SAD-kinases (Par4/Par1 dyad) is required for proper neuronal polarization in vivo and that (iii) extracellular cues can play an instructive role during neuronal polarization. Here, we review some of these recent results and highlight future challenges in the field including the determination of how extracellular cues control intracellular responses underlying neuronal polarization in vivo.  相似文献   

7.
8.
Neurons are compartmentalized into two morphologically, molecularly, and functionally distinct domains: axons and dendrites, and precise targeting and localization of proteins within these domains are critical for proper neuronal functions. It has been reported that several members of the Rab family small GTPases that are key mediators of membrane trafficking, regulate axon-specific trafficking events, but little has been elucidated regarding the molecular mechanisms that underlie dendrite-specific membrane trafficking. Here we show that Rab17 regulates dendritic morphogenesis and postsynaptic development in mouse hippocampal neurons. Rab17 is localized at dendritic growth cones, shafts, filopodia, and mature spines, but it is mostly absent in axons. We also found that Rab17 mediates dendrite growth and branching and that it does not regulate axon growth or branching. Moreover, shRNA-mediated knockdown of Rab17 expression resulted in a dramatically reduced number of dendritic spines, probably because of impaired filopodia formation. These findings have revealed the first molecular link between membrane trafficking and dendritogenesis.  相似文献   

9.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

10.
Neurons possess a polarized morphology. In general, each neuron has several dendrites but only one axon. Such morphology is the basis for directionalized rapid signaling, information flowing from the short dendrites to the long axon. The mechanisms involved in the establishment of the neuronal polarity remain largely unknown. However, recently, members of Rho family proteins have been implicated in the regulation of neuronal morphology especially development of neuronal polarity, axon outgrowth and guidance, dendritic tree elaboration and synapse formation. Moreover, the Rho GTPases have been reported to be directly or indirectly involved in some neurological conditions such as X-linked mental retardation as well as Alzheimer's and Parkinson's diseases. These findings demonstrate the importance of Rho GTPases in the development, maintenance and function of the nervous system.  相似文献   

11.
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.  相似文献   

12.
In order for neurons to perform their function, they must establish a highly polarized morphology characterized, in most of the cases, by a single axon and multiple dendrites. Herein we find that the evolutionarily conserved protein Kidins220 (kinase D-interacting substrate of 220-kDa), also known as ARMS (ankyrin repeat-rich membrane spanning), a downstream effector of protein kinase D and neurotrophin and ephrin receptors, regulates the establishment of neuronal polarity and development of dendrites. Kidins220/ARMS gain and loss of function experiments render severe phenotypic changes in the processes extended by hippocampal neurons in culture. Although Kidins220/ARMS early overexpression hinders neuronal development, its down-regulation by RNA interference results in the appearance of multiple longer axon-like extensions as well as aberrant dendritic arbors. We also find that Kidins220/ARMS interacts with tubulin and microtubule-regulating molecules whose role in neuronal morphogenesis is well established (microtubule-associated proteins 1b, 1a, and 2 and two members of the stathmin family). Importantly, neurons where Kidins220/ARMS has been knocked down register changes in the phosphorylation activity of MAP1b and stathmins. Altogether, our results indicate that Kidins220/ARMS is a key modulator of the activity of microtubule-regulating proteins known to actively regulate neuronal morphogenesis and suggest a mechanism by which it contributes to control neuronal development.  相似文献   

13.
The formation of an axon and dendrites, neuronal polarization, is a prerequisite for neurons to integrate and propagate information within the brain. During the past years progress has been made toward understanding the initial stage of neuronal polarization, axon formation. First, the physiological role of some candidate regulators of neuronal polarity has been affirmed, including Sad kinases, the Rho-GTPase Cdc42, and the actin regulators Ena/VASP proteins. Second, recent studies have revealed microtubule stabilization as a mechanism complementary to actin dynamics underlying neuronal polarization. Moreover, stable microtubules in the axon may form a landmark to confer identity to the axon. This review highlights the recent advances in understanding the intracellular mechanisms underlying neuronal polarization and discusses them in the context of putative cytoskeletal effectors.  相似文献   

14.
The generation and refinement of dendrites is essential for normal brain development and function. However, the molecular mechanisms that govern dendritic morphogenesis are poorly understood. Recent studies from the Crabtree laboratory have uncovered a requirement for the neuron-specific chromatin-remodeling enzyme nBAF in dendritic growth and branching in response to neuronal activity. These findings highlight the significance of epigenetic mechanisms in activity-dependent dendritic morphogenesis, with important implications in brain development and plasticity.  相似文献   

15.
Neurons establish diverse dendritic morphologies during development, and a major challenge is to understand how these distinct developmental programs might relate to, and influence, neuronal function. Drosophila dendritic arborization (da) sensory neurons display class-specific dendritic morphology with extensive coverage of the body wall. To begin to build a basis for linking dendrite structure and function in this genetic system, we analyzed da neuron axon projections in embryonic and larval stages. We found that multiple parameters of axon morphology, including dorsoventral position, midline crossing and collateral branching, correlate with dendritic morphological class. We have identified a class-specific medial-lateral layering of axons in the central nervous system formed during embryonic development, which could allow different classes of da neurons to develop differential connectivity to second-order neurons. We have examined the effect of Robo family members on class-specific axon lamination, and have also taken a forward genetic approach to identify new genes involved in axon and dendrite development. For the latter, we screened the third chromosome at high resolution in vivo for mutations that affect class IV da neuron morphology. Several known loci, as well as putative novel mutations, were identified that contribute to sensory dendrite and/or axon patterning. This collection of mutants, together with anatomical data on dendrites and axons, should begin to permit studies of dendrite diversity in a combined developmental and functional context, and also provide a foundation for understanding shared and distinct mechanisms that control axon and dendrite morphology.  相似文献   

16.
Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3beta correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.  相似文献   

17.
Extracellular matrix receptors in branched organs   总被引:1,自引:0,他引:1  
  相似文献   

18.
Neuronal polarization, the formation of one long axon and several short dendrites, is an obligatory process to integrate and propagate information within the brain. Axon formation is the key event during neuronal polarization and is based on tightly regulated rearrangements of the cytoskeleton. Here, we discuss how the cytoskeleton drives neuronal polarization. First, we convey the role of the actin cytoskeleton and microtubules during axon formation. Second, we discuss different cytoskeletal binding and regulating proteins, which are essential to specify the axon. Finally, we outline plus end tracking proteins (+TIPs) as important regulators for neuronal polarization by mediating the interaction between the actin cytoskeleton and microtubules and compare this function to other polarity processes.  相似文献   

19.
Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for these neurons they will continue to develop, forming functional synaptic connections and surviving for several months in culture. In this protocol we outline a technique to dissect, culture and transfect embryonic mouse hippocampal and cortical neurons. Transfection is accomplished by electroporating DNA into the neurons before plating via nucleofection. This protocol has the advantage of expressing fluorescently-tagged fusion proteins early in development (~4-8hrs after plating) to study the dynamics and function of proteins during polarization, axon outgrowth and branching. We have also discovered that this single transfection before plating maintains fluorescently-tagged fusion protein expression at levels appropriate for imaging throughout the lifetime of the neuron (> 2 months in culture). Thus, this methodology is useful for studying protein localization and function throughout CNS development with little or no disruption of neuronal function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号