首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Members of the bacterial and mitochondrial iron-sulfur cluster (ISC) assembly machinery include the so-called A-type ISC proteins, which support the assembly of a subset of Fe/S apoproteins. The human genome encodes two A-type proteins, termed ISCA1 and ISCA2, which are related to Saccharomyces cerevisiae Isa1 and Isa2, respectively. An additional protein, Iba57, physically interacts with Isa1 and Isa2 in yeast. To test the cellular role of human ISCA1, ISCA2, and IBA57, HeLa cells were depleted for any of these proteins by RNA interference technology. Depleted cells contained massively swollen and enlarged mitochondria that were virtually devoid of cristae membranes, demonstrating the importance of these proteins for mitochondrial biogenesis. The activities of mitochondrial [4Fe-4S] proteins, including aconitase, respiratory complex I, and lipoic acid synthase, were diminished following depletion of the three proteins. In contrast, the mitochondrial [2Fe-2S] enzyme ferrochelatase and cellular heme content were unaffected. We further provide evidence against a localization and direct Fe/S protein maturation function of ISCA1 and ISCA2 in the cytosol. Taken together, our data suggest that ISCA1, ISCA2, and IBA57 are specifically involved in the maturation of mitochondrial [4Fe-4S] proteins functioning late in the ISC assembly pathway.  相似文献   

2.
The budding yeast Saccharomyces cerevisiae contains two homologues of bacterial IscA proteins, designated Isa1p and Isa2p. Bacterial IscA is a product of the isc (iron-sulfur cluster) operon and has been suggested to participate in Fe-S cluster formation or repair. To test the function of yeast Isa1p and Isa2p, single or combinatorial disruptions were introduced in ISA1 and ISA2. The resultant isaDelta mutants were viable but exhibited a dependency on lysine and glutamate for growth and a respiratory deficiency due to an accumulation of mutations in mitochondrial DNA. As with other yeast genes proposed to function in Fe-S cluster assembly, mitochondrial iron concentration was significantly elevated in the isa mutants, and the activities of the Fe-S cluster-containing enzymes aconitase and succinate dehydrogenase were dramatically reduced. An inspection of Isa-like proteins from bacteria to mammals revealed three invariant cysteine residues, which in the case of Isa1p and Isa2p are essential for function and may be involved in iron binding. As predicted, Isa1p is targeted to the mitochondrial matrix. However, Isa2p is present within the intermembrane space of the mitochondria. Our deletion analyses revealed that Isa2p harbors a bipartite N-terminal leader sequence containing a mitochondrial import signal linked to a second sequence that targets Isa2p to the intermembrane space. Both signals are needed for Isa2p function. A model for the nonredundant roles of Isa1p and Isa2p in delivering iron to sites of the Fe-S cluster assembly is discussed.  相似文献   

3.
The assembly of iron-sulfur (Fe/S) clusters in a living cell is mediated by a complex machinery which, in eukaryotes, is localised within mitochondria. Here, we report on a new component of this machinery, the protein Isa2p of the yeast Saccharomyces cerevisiae. The protein shares sequence similarity with yeast Isa1p and the bacterial IscA proteins which recently have been shown to perform a function in Fe/S cluster biosynthesis. Like the Isa1p homologue, Isa2p is localised in the mitochondrial matrix as a soluble protein. Deletion of the ISA2 gene results in the loss of mitochondrial DNA and a strong growth defect. Simultaneous deletion of the ISA1 gene does not further exacerbate this growth phenotype suggesting that the Isa proteins perform a non-essential function. When Isa2p was depleted by regulated gene expression, mtDNA was maintained, but cells grew slowly on non-fermentable carbon sources. The maturation of both mitochondrial and cytosolic Fe/S proteins was strongly impaired in the absence of Isa2p. Thus, Isa2p is a new member of the Fe/S cluster biosynthesis machinery of the mitochondrial matrix and may be involved in the binding of an intermediate of Fe/S cluster assembly.  相似文献   

4.
IscA/Isa proteins function as alternative scaffolds for the assembly of Fe-S clusters and/or provide iron for their assembly in prokaryotes and eukaryotes. Isa are usually non-essential and in most organisms are confined to the mitochondrion. We have studied the function of TbIsa1 and TbIsa2 in Trypanosoma brucei, where the requirement for both of them to sustain cell growth depends on the life cycle stage. The TbIsa proteins are abundant in the procyclic form, which contains an active organelle. Both proteins are indispensable for growth, as they are required for the assembly of Fe-S clusters in mitochondrial aconitase, fumarase and succinate dehydrogenase. Reactive oxygen species but not iron accumulate in the procyclic mitochondrion upon ablation of the TbIsa proteins, but their depletion does not influence the assembly of Fe-S clusters in cytosolic proteins. In the bloodstream form, which has a downregulated mitochondrion, the TbIsa proteins are non-essential. The Isa2 orthologue of the anaerobic protist Blastocystis partially rescued the growth and enzymatic activities of TbIsa1/2 knock-down. Rescues of single knock-downs as well as heterologous rescues with human Isa orthologues partially recovered the activities of aconitase and fumarase. These results show that the Isa1 and Isa2 proteins of diverse eukaryotes have overlapping functions.  相似文献   

5.
In eukaryotes, mitochondria execute a central task in the assembly of cellular iron-sulfur (Fe/S) proteins. The organelles synthesize their own set of Fe/S proteins, and they initiate the generation of extramitochondrial Fe/S proteins. In the present study, we identify the mitochondrial matrix protein Isa1p of Saccharomyces cerevisiae as a new member of the Fe/S cluster biosynthesis machinery. Isa1p belongs to a family of homologous proteins present in prokaryotes and eukaryotes. Deletion of the ISA1 gene results in the loss of mitochondrial DNA precluding the use of the Deltaisa1 strain for functional analysis. Cells in which Isa1p was depleted by regulated gene expression maintained the mitochondrial DNA, yet the cells displayed retarded growth on nonfermentable carbon sources. This finding indicates the importance of Isa1p for mitochondrial function. Deficiency of Isa1p caused a defect in mitochondrial Fe/S protein assembly. Moreover, Isa1p was required for maturation of cytosolic Fe/S proteins. Two cysteine residues in a conserved sequence motif characterizing the Isa1p protein family were found to be essential for Isa1p function in the biogenesis of both intra- and extramitochondrial Fe/S proteins. Our findings suggest a function for Isa1p in the binding of iron or an intermediate of Fe/S cluster assembly.  相似文献   

6.
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.  相似文献   

7.
A genome-wide screen for Saccharomyces cerevisiae iron-sulfur (Fe/S) cluster assembly mutants identified the gene IBA57. The encoded protein Iba57p is located in the mitochondrial matrix and is essential for mitochondrial DNA maintenance. The growth phenotypes of an iba57Δ mutant and extensive functional studies in vivo and in vitro indicate a specific role for Iba57p in the maturation of mitochondrial aconitase-type and radical SAM Fe/S proteins (biotin and lipoic acid synthases). Maturation of other Fe/S proteins occurred normally in the absence of Iba57p. These observations identify Iba57p as a novel dedicated maturation factor with specificity for a subset of Fe/S proteins. The Iba57p primary sequence is distinct from any known Fe/S assembly factor but is similar to certain tetrahydrofolate-binding enzymes, adding a surprising new function to this protein family. Iba57p physically interacts with the mitochondrial ISC assembly components Isa1p and Isa2p. Since all three proteins are conserved in eukaryotes and bacteria, the specificity of the Iba57/Isa complex may represent a biosynthetic concept that is universally used in nature. In keeping with this idea, the human IBA57 homolog C1orf69 complements the iba57Δ growth defects, demonstrating its conserved function throughout the eukaryotic kingdom.  相似文献   

8.
The yeast Saccharomyces cerevisiae is able to use some biotin precursors for biotin biosynthesis. Insertion of a sulfur atom into desthiobiotin, the final step in the biosynthetic pathway, is catalyzed by biotin synthase (Bio2). This mitochondrial protein contains two iron-sulfur (Fe/S) clusters that catalyze the reaction and are thought to act as a sulfur donor. To identify new components of biotin metabolism, we performed a genetic screen and found that Isa2, a mitochondrial protein involved in the formation of Fe/S proteins, is necessary for the conversion of desthiobiotin to biotin. Depletion of Isa2 or the related Isa1, however, did not prevent the de novo synthesis of any of the two Fe/S centers of Bio2. In contrast, Fe/S cluster assembly on Bio2 strongly depended on the Isu1 and Isu2 proteins. Both isa mutants contained low levels of Bio2. This phenotype was also found in other mutants impaired in mitochondrial Fe/S protein assembly and in wild-type cells grown under iron limitation. Low Bio2 levels, however, did not cause the inability of isa mutants to utilize desthiobiotin, since this defect was not cured by overexpression of BIO2. Thus, the Isa proteins are crucial for the in vivo function of biotin synthase but not for the de novo synthesis of its Fe/S clusters. Our data demonstrate that the Isa proteins are essential for the catalytic activity of Bio2 in vivo.  相似文献   

9.
Eukaryotic Isa1 is one of several mitochondrial proteins that have been implicated in Fe-S cluster assembly paths in vivo. We report the first biochemical characterization of an eukaryotic member of this family and discuss this in the context of results from in vivo studies and studies of bacterial homologues. Schizosaccharomyces pombe Isa1 is a multimeric protein carrying [2Fe-2S](2+) clusters that have been characterized by M?ssbauer and optical spectroscopic studies. Complex formation with a redox-active ferredoxin has been identified through crosslinking experiments and the coordination chemistry and stability of the native clusters has been investigated through site-directed mutagenesis and spectroscopic analysis. Electronic supplementary material to this paper, containing M?ssbauer and UV-visible spectra for mutant Isa1 proteins, can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0330-2.  相似文献   

10.
11.
12.
13.
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.  相似文献   

14.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

15.
16.
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.  相似文献   

17.
18.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

19.
In Saccharomyces cerevisiae, the mitochondrial inner membrane readily allows transport of cytosolic NAD(+), but not NADPH, to the matrix. Pos5p is the only known NADH kinase in the mitochondrial matrix. The enzyme phosphorylates NADH to NADPH and is the major source of NADPH in the matrix. The importance of mitochondrial NADPH for cellular physiology is underscored by the phenotypes of the Δpos5 mutant, characterized by oxidative stress sensitivity and iron-sulfur (Fe-S) cluster deficiency. Fe-S clusters are essential cofactors of proteins such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S] in mitochondria. Intact mitochondria isolated from wild-type yeast can synthesize these clusters and insert them into the corresponding apoproteins. Here, we show that this process of Fe-S cluster biogenesis in wild-type mitochondria is greatly stimulated and kinetically favored by the addition of NAD(+) or NADH in a dose-dependent manner, probably via transport into mitochondria and subsequent conversion into NADPH. Unlike wild-type mitochondria, Δpos5 mitochondria cannot efficiently synthesize Fe-S clusters on endogenous aconitase or imported ferredoxin, although cluster biogenesis in isolated Δpos5 mitochondria is restored to a significant extent by a small amount of imported Pos5p. Interestingly, Fe-S cluster biogenesis in wild-type mitochondria is further enhanced by overexpression of Pos5p. The effects of Pos5p on Fe-S cluster generation in mitochondria indicate that one or more steps in the biosynthetic process require NADPH. The role of mitochondrial NADPH in Fe-S cluster biogenesis appears to be distinct from its function in anti-oxidant defense.  相似文献   

20.
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号