首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A lead compound with the (1,3,4-thiadiazol-2-yl)-acrylamide scaffold was discovered to have significant cytotoxicity on several tumor cell lines in an in-house cell-based screening. A total of 60 derivative compounds were then synthesized and tested in a CCK-8 cell viability assay. Some of them exhibited improved cytotoxic activities. The most potent compounds had IC50 values of 1–5 μM on two acute leukemia tumor cell lines, i.e. RS4;11 and HL-60. Flow cytometry analysis of several active compounds and detection of caspase activation indicated that they induced caspase-dependent apoptosis. It was also encouraging to observe that these compounds did not have obvious cytotoxicity on normal cells, i.e. IC50 > 50 μM on HEK-293T cells. Although the molecular targets of this class of compound are yet to be revealed, our current results suggest that this class of compound represents a new possibility for developing drug candidates against acute leukemia.  相似文献   

2.
Indolones 4 and 5, and indolyl-aminoacids 6a-e, 7a-e, and 8a and 8b were designed by structural modification of lead compound 3. These compounds were tested on six tumor cell lines to determine the role of the azepinone ring and the N-phenyl substituent in the cytotoxicity of 3. Our results show that 4 and 5 have dramatically reduced cytotoxicity, due to the loss of the azepinone moiety of lead compound 3. In contrast, indolyl-aminoacids 6a, 7a, and 8a (N-(L)-cysteine ethyl ester derivatives) inhibited the proliferation of almost all cancer cell lines tested, even though they lack the azepinone ring. In addition, derivative 6c (N-(D)-alanine methyl ester group) was selectively cytotoxic to HCT-15 cells. Preliminary structure-activity relationship (SAR) studies with these compounds revealed the importance of the ethyl ester moiety on the amino acid moiety. Compounds 6a-e, 7a-e, and 8a and 8b were obtained in good yields by a catalytic Paal-Knorr reaction carried out under microwave irradiation using commercially available chiral amino esters or amino acids and 1,4-dicarbonyl compounds.  相似文献   

3.
Pyrroloazepinones 8a-j and 9a-j were designed by structural modification of lead compound 3. These compounds were tested on five tumor cell lines to determine the role of the azeto ring and the 2-methyl substituent in the cytotoxicity of compound 3. Our results show that compounds 8a-j (R1=CH3) have dramatically reduced cytotoxicity, resulting from the loss of the azeto moiety of lead compound 3. By contrast, azepinones 9a-j (R1=4-nitrophenyl) inhibited the proliferation of almost all cancer cell lines tested even though they lack the azeto ring. Preliminary SAR studies with these compounds revealed the importance of halogens at the para- or meta-position of the 1-phenyl moiety. Additionally, derivatives 9a (R2=H), 9e (R2=4-F), and 9g (R2=4-OMe) were selectively cytotoxic to U-251 cells. However, none of the pyrroloazepinones inhibited the enzymatic activity of CDK1/cyclin B, CDK5/p25, and GSK-3.  相似文献   

4.
A series of 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase and five typical cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG). Most compounds showed moderate to excellent antiproliferative activity. In this study, a promising compound 34, with a c-Met IC50 value of 1.04 nM, was identified as a multitargeted receptor tyrosine kinase inhibitor. The SAR analyses indicated that compounds with halogen group, especially fluoro group, at 4-position on the phenyl ring (moiety B) have potent antitumor activity, and methylation on the 5-atom linker played an important role in the c-Met enzymatic activity.  相似文献   

5.
The integrin alpha(v)beta(3) is expressed in a number of cell types and is thought to play a major role in several pathological conditions. Various small molecules that inhibit the integrin have been shown to suppress tumor growth and retinal angiogenesis. The tripeptide Arg-Gly-Asp (RGD), a common binding motif in several ligands that bind to alpha(v)beta(3), has been depeptidized and optimized in our efforts toward discovering a small molecule inhibitor. We recently disclosed the synthesis and biological activity of several small molecules that did not contain any peptide bond and mimic the tripeptide RGD. The phenethyl group in one of the lead compounds was successfully replaced with a cyclopropyl moiety. The new lead compound was optimized for potency, selectivity, and for its ADME properties. We describe herein the discovery, synthesis, and optimization of cyclopropyl containing analogs that are potent and selective inhibitors of alpha(v)beta(3).  相似文献   

6.
A series of novel quinoxalinyl-piperazine compounds, 1-[(5 or 6-substituted alkoxyquinoxalinyl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives were synthesized and evaluated as an anticancer agent. From screening of quinoxalinyl-piperazine compound library, we identified that many compounds inhibited proliferation of various human cancer cells at nanomolar concentrations. Among them, one of the fluoro quinoxalinyl-piperazine derivatives showed its IC(50) values ranging from 11 to 21nΜ in the growth inhibition of cancer cells. This compound also displayed a more potent effect than paclitaxel against paclitaxel resistant HCT-15 colorectal carcinoma cells. The potency of this novel compound was further confirmed with the synergistic cytotoxic effect with several known cancer drugs such as paclitaxel, doxorubicin, cisplatin, gemcitabine or 5-fluorouracil in cancer cells. This strong cell killing effect was derived from the induction of apoptosis. Mechanistic studies have shown that this quinoxalinyl-piperazine compound is a G2/M-specific cell cycle inhibitor and inhibits anti-apoptotic Bcl-2 protein with p21 induction. Thus the results suggest that our compound has potential use in the growth inhibition of drug resistant cancer cells and the combination therapy with other clinically approved anticancer agents as well.  相似文献   

7.
Chalcones and Mannich bases are a group of compounds known for their cytotoxicities. In this study restricted chalcone analogue, compound 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one MT1, was used as a starting compound to synthesize new mono Mannich bases since Mannich bases may induce more cytotoxicity than chalcone analogue that they are derived from by producing additional alkylating center for cellular thiols. In this study, cyclic and acyclic amines were used to synthesize Mannich bases. All compounds were tested against Ca9–22 (gingival carcinoma), HSC-2, HSC-3 and HSC-4 (oral squamous cell carcinoma) as tumour cell lines and HGF (gingival fibroblasts), HPC (pulp cells) and HPLF (periodontal ligament fibroblasts) human normal oral cells as non tumour cell lines. Cytotoxicity, selectivity index (SI) values and potency selectivity expression (PSE) values expressed as a percentage were determined for the compounds. According to data obtained, the compound MT8 with the highest PSE value bearing N-methylpiperazine moiety seems to be a good candidate to develop new cytotoxic compounds and is suited for further investigation.  相似文献   

8.
A natural bacterial isolate that we have classified as Pseudomonas acidovorans grows on the lignin model compounds 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (compound 1) and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (compound 1'), as well as on the corresponding 1-oxo compounds (2 and 2') as sole sources of carbon and energy. Metabolic intermediates present in cultures growing on compound 1 included compound 2, 2-methoxyphenol (guaiacol [compound 3]), beta-hydroxypro-pioveratrone (compound 4), acetoveratrone (compound 5), and veratric acid (compound 6). Also identified were compounds 1', 2', beta-hydroxypropiovanillone (compound 4'), and acetovanillone (compound 5'), indicating that 4-O demethylation also occurs. The phenolic intermediates were the same as those found in cultures growing on compound 1'. Compounds 2 and 2' were in part also reduced to compounds 1 and 1', respectively. Compound 3 was shown to be derived from the 2-methoxyphenoxy moiety. A suggested degradation scheme is as follows: compound 1-->2-->(3 + 4)-->5-->6 (and similarly for 1'). In this scheme, the key reaction is cleavage of the ether linkage between C-2 (C(beta)) of the phenylpropane moiety and the 2-methoxyphenoxy moiety in compounds 2 and 2' (i.e., beta-aryl ether cleavage). On the basis of compounds identified, viz., 3 and 4 (4'), cleavage appears formally to be reductive. Because this is unlikely, the initial cleavage products probably were not detected. The implications of these results for the enzyme(s) responsible are discussed.  相似文献   

9.
The design, synthesis and biological evaluation of novel seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and the seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) analogues of the duocarmycins are described. These novel analogues (4-7) were designed on the premise that the lone pair of electrons on the furano-oxygen atom could enter into conjugation with the isocyclopropylfurano[e]indolone (iso-CFI) alkylating moiety, formed from the loss of HCl in compounds 4-7. The seco-iso-CFI DNA alkylating pharmacophore was synthesized through a well precedented approach of 5-exo-trig aryl radical cyclization with a vinyl chloride. In our studies, in addition to the formation of the seco-iso-CFI product, an equal amount of an unexpected seco-CFQ product was also generated during the radical cyclization reaction. Like CC-1065 and adozelesin, using Taq DNA polymerase stop and thermal cleavage assays, the seco-iso-CFI compounds (4 and 6) and the seco-CFQ compounds (5 and 7) were shown to preferentially alkylate the adenine-N3 position within the minor groove of long stretches of A residues. A MM2 energy optimized molecular model of a 1:1 complex of compound 6 with DNA reveals that the iso-CFI compound fits snugly within the minor groove. Using a MTT based experiment, the cytotoxicity of compounds 4-7 were determined against the growth of murine leukemia (L1210), mastocytoma (P815) and melanoma (B16) cell lines. The concentrations of compounds required to inhibit the growth of these tumor cells by 50% is in the range of 10(-8)M. These compounds were also tested against a panel of human cancer cells by the National Cancer Institute, demonstrating that the compounds exhibited a high level of activity against selected solid tumors. At a concentration of 0.0084 microM (based on the IC(50) of compound 17 (seco-CBI-TMI) against the growth L1210 cells), while compounds 4 and 17 were toxic against murine bone marrow cells as judged by a colony forming study of freshly isolated murine progenitor hematopoeitic cells, compound 5, a seco-CFQ compound, was significantly less toxic. Flow cytometric analysis of P815 cells that had been incubated for 24h with compounds 4 and 5 at their cytotoxic IC(50) concentrations indicated the induction of apoptosis in a large percentage of cells, thereby suggesting that this might be the mechanism by which the iso-CFI compounds kill cells.  相似文献   

10.
The interaction with DNA of two water soluble platinum supramolecular squares [(en)Pt(N-N)]4(NO3)8 (en=ethylenediamine, N-N=1,4-bis(4-pyridyl)tetrafluorobenzene, compound 1, N-N=4,4'-bipyridine, compound 2) has been studied by circular dichroism, electrophoretic mobility and atomic force microscopy. the two complexes drastically modify the second and tertiary structures of DNA, but compound 2 does it strongly due probably to its smaller size by comparison with compound 1 and its more suitable structural features for intercalation between base pairs. The two supramolecular squares were assayed against the HL-60 tumor cell line for 24 and 72 h. The IC50 values for 24 h are smaller than that of cisplatin for this time, however for 72 h the IC50 have higher values being the corresponding to compound 2 comparable to that of cisplatin. Apoptotic assays were also carried out for the compounds 1 and 2 against the tumor cell line.  相似文献   

11.
Induction of tumor cell apoptosis has been recognized as a valid anticancer strategy. However, therapeutic selectivity between tumor and normal cells has always been a challenge. Here, we report a novel anti-cancer compound methyl 3-(4-nitrophenyl) propiolate (NPP) preferentially induces apoptosis in tumor cells through P450-catalyzed reactive oxygen species (ROS) production. A compound sensitivity study on multiple cell lines shows that tumor cells with high basal ROS levels, low antioxidant capacities, and p53 mutations are especially sensitive to NPP. Knockdown of p53 sensitized non-transformed cells to NPP-induced cell death. Additionally, by comparing NPP with other ROS inducers, we show that the susceptibility of tumor cells to the ROS-induced cell death is influenced by the mode, amount, duration, and perhaps location of ROS production. Our studies not only discovered a unique anticancer drug candidate but also shed new light on the understanding of ROS generation and function and the potential application of a ROS-promoting strategy in cancer treatment.  相似文献   

12.
Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.  相似文献   

13.
A new biochemical mechanism of lysing bacterial cells by treatment with certain beta-lactam compounds that possess a terminal D-amino acid moiety in their side chain was demonstrated. The two functions of the molecule, the beta-lactam and terminal D-amino acid moiety, are both involved in the activity of lysing gram-negative bacteria, which is characterized by very rapid lysis of the cells in the first few hours after their contact with the compound. This mechanism was proved by studies on one such compound, named MT-141, which contains a terminal D-cysteine moiety with free amino and carboxyl groups in the 7 beta-side chain of the 7 alpha-methoxy-cephalosporin skeleton. This compound bound to the cell-wall peptidoglycan of Escherichia coli through the D-amino group of its terminal D-amino acid moiety and this seemed to cause rapid cell lysis. Both activities, of binding to peptidoglycan and of causing rapid cell lysis, were inhibited by certain D-amino acids, but not by L-amino acids. Mutants were isolated that had simultaneously gained decreased sensitivity to this kind of beta-lactam compound and supersensitivity to globomycin, an inhibitor of formation of lipoproteins which function in linking the peptidoglycan to the outer membrane. These results suggest that binding of the terminal D-amino acid moiety of the beta-lactam compound to peptidoglycan somehow influences formation of the linkage between the outer membrane and the peptidoglycan and consequently enhances the cell lytic activity of the beta-lactam portion of the molecule.  相似文献   

14.
A co-crystal structure of amide-containing compound (4) in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein and molecular modeling were utilized to design and discover a potent novel cyanoguanidine-containing inhibitor bearing a sulfone moiety (5, Nampt Biochemical IC50 = 2.5 nM, A2780 cell proliferation IC50 = 9.7 nM). Further SAR exploration identified several additional cyanoguanidine-containing compounds with high potency and good microsomal stability. Among these, compound 15 was selected for in vivo profiling and demonstrated good oral exposure in mice. It also exhibited excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model. The co-crystal structure of this compound in complex with the NAMPT protein was also determined.  相似文献   

15.
We have compared the effects of forskolin, N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP, Bt2-cAMP), and butyrate on several aspects of neuroblastoma cell physiology. The morphology of Neuro 2A cells was similar after incubation with forskolin and Bt2-cAMP, which caused extensive neurite outgrowth, whereas in the presence of butyrate some rudimentary neurites were formed but they were not nearly as extensive. All compounds produced a dose-dependent inhibition of cell proliferation, but the effect of Bt2-cAMP was more marked than that caused by forskolin, thus showing that the effect of Bt2-cAMP is due partially to the butyrate released. Acetylcholinesterase activity was lower in the cells incubated with butyrate or Bt2-cAMP than in untreated cells or in forskolin-treated cells. This suggests that cyclic AMP does not play a role in the regulation of this enzyme. Bt2-cAMP produced histone acetylation, a well-known effect of butyrate in cultured cells, whereas forskolin did not affect this modification. Consequently, the levels of thyroid hormone receptor, a nuclear protein whose concentration is regulated by butyrate through changes in acetylation of chromatin proteins, were decreased in cells incubated with Bt2-cAMP or butyrate, but were unaffected by forskolin. Butyrate elevated the concentration of histone H1(0), a protein that increases in neuroblastoma cells as a result of different treatments that block cell division. The concentration of H1(0) in the cells treated with Bt2-cAMP was at a level intermediate between that found after treatment with butyrate and with forskolin. The present results clearly indicate that some of the effects of Bt2-cAMP on neuroblastoma cells can be attributed to the butyryl moiety of this compound rather than to the cyclic nucleotide itself.  相似文献   

16.
A series of 1-aryl-5-(4-arylpiperazine-1-carbonyl)-1H-tetrazols as microtubule destabilizers were designed, synthesised and evaluated for anticancer activity. Based on bioisosterism, we introduced the tetrazole moiety containing the hydrogen-bond acceptors as B-ring of XRP44X analogues. The key intermediates ethyl 1-aryl-1H-tetrazole-5-carboxylates 10 can be simply and efficiently prepared via a microwave-assisted continuous operation process. Among the compounds synthesised, compound 6–31 showed noteworthy potency against SGC-7901, A549 and HeLa cell lines. In mechanism studies, compound 6–31 inhibited tubulin polymerisation and disorganised microtubule in SGC-7901 cells by binding to tubulin. Moreover, compound 6–31 arrested SGC-7901cells in G2/M phase. This study provided a new perspective for development of antitumor agents that target tubulin.  相似文献   

17.
Summary RS-0481, (4R)-3-benzoyl-N-[(1R)-phenylethyl]-4-thiazolidinecarboxamide, is a compound that can re-establish the function of certain lymphoid cell populations impaired by the presence of a growing tumor in an animal. The compound markedly augmented the tumorspecific cytotoxic T lymphocytes,Tdth (delayed-type hypersensitivity T cells), and the nonspecific lymphokine-activated-killer-cell-like cell responses. It also enhanced the tumor-inhibitory effect of macrophages in tumor-bearing mice, but not in normal mice, indicating that it enhances the antitumor immune responses. Lymphocytes from RS-0481-treated tumor-bearing mice released significantly higher amounts of macrophage-activating factor(s) (MAF) and interleukin-2(IL-2)-like factors in culture compared with lymphocytes from untreated animals. Also, sera from treated tumor bearers showed elevated colony-stimulating factor (CSF) activity. Although the compound did not influence the factor-producing activity in mice without tumor, it enhanced the responsiveness of their bone marrow cells, T cells, and macrophages to CSF, IL-2, and MAF. It seems therefore possible that the compound enhances the responsiveness of immunocompetent cells to cytokines, resulting in a marked augmentation of antitumor T cell responses in tumor-bearing mice. Consistently it inhibited the development of lymph node metastasis of transplanted X5563 plasmacytoma, and we showed that T cells play a decisive role in this inhibition. The compound also counteracted the development of suppressor T cell activity in the spleen of tumor-bearing mice.  相似文献   

18.
Causal implication of S100A4 in inducing metastases was convincingly shown previously. However, the mechanisms that associate S100A4 with tumor progression are not well understood. S100A4 protein, as a typical member of the S100 family, exhibits dual, intracellular and extracellular, functions. This work is focused on the extracellular function of S100A4, in particular its involvement in tumor-stroma interplay in VMR (mouse adenocarcinoma cell line) tumor cells, which exhibit stroma-dependent metastatic phenotype. We demonstrated the reciprocal influence of tumor and stroma cells where tumor cells stimulate S100A4 secretion from fibroblasts in culture. In turn, extracellular S100A4 modifies the cytoskeleton and focal adhesions and triggers several other events in tumor cells. We found stabilization of the tumor suppressor protein p53 and modulation of its function. In particular, extracellular S100A4 down-regulates the pro-apoptotic bax and the angiogenesis inhibitor thrombospondin-1 genes. For the first time, we demonstrate here that the S100A4 protein added to the extracellular space strongly stimulates proteolytic activity of VMR cells. This activity most probably is associated with matrix metalloproteinases and, in particular, with matrix metalloproteinase-13. Finally, the application of the recombinant S100A4 protein confers stroma-independent metastatic phenotype on VMR tumor cells. In conclusion, our results indicate that metastasis-inducing S100A4 protein plays a pivotal role in the tumor-stroma environment. S100A4 released either by tumor or stroma cells triggers pro-metastatic cascades in tumor cells.  相似文献   

19.
A new class of Aurora-A inhibitors have been identified based on the 2-amino-pyrrolo[2,3-d]pyrimidine scaffold. Here, we describe the synthesis and SAR of this novel series. We report compounds which exhibit nanomolar activity in the Aurora-A biochemical assay and are able to inhibit tumor cell proliferation. This study culminates in compound 30, an inhibitor with potent activity against Aurora A (IC50=0.008 microM), anti-proliferative activity against several tumor cell lines and induces polyploidy in H460 cells.  相似文献   

20.
The synthesis, DNA binding properties, and in vitro and in vivo anticancer activity of fifteen achiral seco-cyclopropylindoline (or achiral seco-CI) analogs (5a-o) of CC-1065 and the duocarmycins are described. The achiral seco-CI analogs contain a 4-hydroxyphenethyl halide moiety that is attached to a wide range of indole, benzimidazole, pyrrole, and pyridyl-containing noncovalent binding components. The 4-hydroxyphenethyl halide moiety represents the simplest mimic of the seco-cyclopropylpyrroloindoline (seco-CPI) pharmacophore found in the natural products, and it lacks a chiral center. The sequence and minor groove specificity of the achiral compounds was ascertained using a Taq DNA polymerase stop assay and a thermal induced DNA cleavage experiment using either a fragment of pBR322 or pUC18 plasmid DNA. For example, seco-CI-InBf (5a) and seco-CI-TMI (5c) demonstrated specificity for AT-rich sequences, particularly by reacting with the underlined adenine-N3 position of 5'-AAAAA(865)-3'. This is also the sequence that CC-1065 and adozelesin prefer to alkylate. The achiral seco-CI compounds were subjected to cytotoxicity studies against several human (K562, LS174T, PC3, and MCF-7) and murine cancer cell lines (L1210 and P815). Following continuous drug exposure, the achiral compounds were found to be cytotoxic, with IC(50) values in the muM range. Interestingly, the carbamate protected compound 5p was significantly less cytotoxic than agent 5c, supporting the hypothesis that loss of HCl and formation of a spiro[2,5]cyclopropylcyclohexadienone intermediate is necessary for biological activity. The achiral seco-CI compounds 5a and 5c were submitted to the National Cancer Institute for further cytotoxicity screening against a panel of 60 different human cancer cell lines. Both compounds showed significant activity, particularly against several solid tumor cell lines. Flow cytometry studies of P815 cells that were incubated with compound 5c at its IC(50) concentration for 24h showed induction of apoptosis in a large percentage of cells. Compounds 5a and 5c were selected by the NCI for an in vivo anticancer hollow-fiber test, and received composite scores of 18 and 22, respectively. These two compounds were subsequently evaluated for in vivo anticancer activity against the growth of a human advanced stage SC UACC-257 melanoma in skid mice. At a dose of 134 mg/kg administered IP, compound 5c gave a T/C value of 40% (for day 51), and the median number of days of doubling tumor growth was 27.7, versus 15.8 for untreated animals. For compound 5a, at 200mg/kg, the T/C was 58% and the median number of days of doubling tumor growth was 20.0 versus 8.7 for untreated animals. At these doses no toxicity or weight loss was observed for either compound. Furthermore, compound 5c was not toxic to murine bone marrow cell growth in culture, at a dose that was toxic for the previously reported seco-CBI (cyclopropylbenzoindoline)-TMI (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号