首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Functional integrity of mitochondria is critical for optimal cellular physiology. A suite of conserved mitochondrial proteases known as intramitochondrial quality control represents one of the mechanisms assuring normal mitochondrial function. We previously demonstrated that ATP-independent metalloprotease Oma1 mediates degradation of hypohemylated Cox1 subunit of cytochrome c oxidase and is active in cytochrome c oxidase-deficient mitochondria. Here we show that Oma1 is important for adaptive responses to various homeostatic insults and preservation of normal mitochondrial function under damage-eliciting conditions. Changes in membrane potential, oxidative stress, or chronic hyperpolarization lead to increased Oma1-mediated proteolysis. The stress-triggered induction of Oma1 proteolytic activity appears to be associated with conformational changes within the Oma1 homo-oligomeric complex, and these alterations likely involve C-terminal residues of the protease. Substitutions in the conserved C-terminal region of Oma1 impair its ability to form a labile proteolytically active complex in response to stress stimuli. We demonstrate that Oma1 genetically interacts with other inner membrane-bound quality control proteases. These findings indicate that yeast Oma1 is an important player in IM protein homeostasis and integrity by acting in concert with other intramitochondrial quality control components.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, mitochondria form a branched, tubular reticulum in the periphery of the cell. Mmm1p is required to maintain normal mitochondrial shape and in mmm1 mutants mitochondria form large, spherical organelles. To further explore Mmm1p function, we examined the localization of a Mmm1p-green fluorescent protein (GFP) fusion in living cells. We found that Mmm1p-GFP is located in small, punctate structures on the mitochondrial outer membrane, adjacent to a subset of matrix-localized mitochondrial DNA nucleoids. We also found that the temperature-sensitive mmm1-1 mutant was defective in transmission of mitochondrial DNA to daughter cells immediately after the shift to restrictive temperature. Normal mitochondrial nucleoid structure also collapsed at the nonpermissive temperature with similar kinetics. Moreover, we found that mitochondrial inner membrane structure is dramatically disorganized in mmm1 disruption strains. We propose that Mmm1p is part of a connection between the mitochondrial outer and inner membranes, anchoring mitochondrial DNA nucleoids in the matrix.  相似文献   

3.
The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.  相似文献   

4.
《BBA》2023,1864(2):148949
Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks. Thus, function and morphology are closely coupled. Senescent cardiomyocytes from the mouse heart display alterations of the inner mitochondrial membrane. To study the relation between inner mitochondrial membrane architecture, dynamics and function is hardly possible in living organisms. Here, we present two cardiomyocyte senescence cell models that allow in cellular studies of mitochondrial performance. We show that doxorubicin treatment transforms human iPSC-derived cardiomyocytes and rat neonatal cardiomyocytes in an aged phenotype. The treated cardiomyocytes display double-strand breaks in the nDNA, have β-galactosidase activity, possess enlarged nuclei, and show p21 upregulation. Most importantly, they also display a compromised inner mitochondrial structure. This prompted us to test whether the dynamics of the inner membrane was also altered. We found that the exchange of IMM components after organelle fusion was faster in doxorubicin-treated cells than in control cells, with no change in mitochondrial fusion dynamics at the meso-scale. Such altered IMM morphology and dynamics may have important implications for local OXPHOS protein organization, exchange of damaged components, and eventually the mitochondrial bioenergetics function of the aged cardiomyocyte.  相似文献   

5.
Bcl-2, an anti-apoptotic protein, is believed to be localized in the outer mitochondrial membrane, endoplasmic reticulum, and nuclear envelope. However, Bcl-2 has also been suggested as playing a role in the maintenance of mitochondrial membrane potential, indicating its possible association with the inner mitochondrial membrane. We therefore further examined the exact localization of Bcl-2 in mitochondria purified from wild-type and bcl-2-transfected PC12 cells and pre- and postnatal rat brains. Double immunostaining demonstrated that Bcl-2 was co-localized with subunit beta of F1F0ATPase in the inner mitochondrial membrane. Biochemical analysis of isolated mitochondria using digitonin and trypsin suggests an association of Bcl-2 with the inner mitochondrial membrane. More interestingly, the majority of Bcl-2 disappeared from the inner membrane of mitochondria when cultured under serum deprivation. These results suggest that Bcl-2 acts as an anti-apoptotic regulator by localizing mainly to the inner mitochondrial and smooth ER membranes.  相似文献   

6.
Giant mitochondria accumulate within aged or diseased postmitotic cells as a consequence of insufficient autophagy, which is normally responsible for mitochondrial degradation. We report that giant mitochondria accumulating in cultured rat myoblasts due to inhibition of autophagy have low inner membrane potential and do not fuse with each other or with normal mitochondria. In addition to the low inner mitochondrial membrane potential in giant mitochondria, the quantity of the OPA1 mitochondrial fusion protein in these mitochondria was low, but the abundance of mitofusin-2 (Mfn2) remained unchanged. The combination of these factors may explain the lack of mitochondrial fusion in giant mitochondria and imply that the dysfunctional giant mitochondria cannot restore their function by fusing and exchanging their contents with fully functional mitochondria. These findings have important implications for understanding the mechanisms of accumulation of age-related mitochondrial damage in postmitotic cells.  相似文献   

7.
8.
Many essential functions of mitochondrial metabolism have been studied in the past three decades in considerable depth: oxidative phosphorylation, catabolism of fatty acids, role in nitrogen metabolism, and amino acid metabolism. More recently, other aspects attracted much attention like protein translocation into mitochondria, inheritance of mitochondrial DNA, movement of mitochondria, their fusion and fission, and their involvement in apoptosis, ageing, cancer and other cellular processes. Together with these new views on the function of mitochondria, new ideas on the structure of mitochondria emerged. Here we will discuss the current knowledge about how the membranes of mitochondria are organized and how they interact. Interactions between components of the inner and the outer membrane are necessary for a number of central mitochondrial functions such as the channeling of metabolites, coordinated fusion and fission of mitochondria, and protein transport. Some of these interactions appear stable such as the so-called morphological contact sites; others are quite dynamic. Direct evidence that a certain protein is part of morphologically defined contact sites is lacking. Nevertheless, protein translocase complexes of the outer and the inner membrane exhibit stable interactions between the two membranes when precursor proteins are arrested during import into mitochondria. Finally, we discuss possible roles of cristae junctions, another morphologically defined membrane structure in mitochondria.  相似文献   

9.
Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady‐state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.  相似文献   

10.
All present‐day mitochondria originate from a single endosymbiotic event that gave rise to the last eukaryotic common ancestor more than a billion years ago. However, to date, many aspects of mitochondrial evolution have remained unresolved. Comparative genomics and proteomics have revealed a complex evolutionary origin for many mitochondrial components. To understand the evolution of the respiratory chain, we have examined both the components and the mechanisms of the assembly pathway of complex I. Complex I represents the first enzyme in the respiratory chain, and complex I deficiencies have dramatic consequences in both animals and plants. The complex is located in the mitochondrial inner membrane and possesses two arms: one embedded in the inner membrane and one protruding in the matrix. Here, we describe the assembly pathway of complex I in the model plant Arabidopsis thaliana. Using a proteomics approach called complexome profiling, we have resolved the different steps in the assembly process in plants. We propose a model for the stepwise assembly of complex I, including every subunit. We then compare this pathway with the corresponding pathway in humans and find that complex I assembly in plants follows a different, and likely ancestral, pathway compared with the one in humans. We show that the main evolutionary changes in complex I structure and assembly in humans occurred at the level of the membrane arm, whereas the matrix arm remained rather conserved.  相似文献   

11.
The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.  相似文献   

12.
Mitochondria are complex organelles with a highly dynamic distribution and internal organization. Here, we demonstrate that mitofilin, a previously identified mitochondrial protein of unknown function, controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. Down-regulation of mitofilin in HeLa cells by using specific small interfering RNA lead to decreased cellular proliferation and increased apoptosis, suggesting abnormal mitochondrial function. Although gross mitochondrial fission and fusion seemed normal, ultrastructural studies revealed disorganized mitochondrial inner membrane. Inner membranes failed to form tubular or vesicular cristae and showed as closely packed stacks of membrane sheets that fused intermittently, resulting in a complex maze of membranous network. Electron microscopic tomography estimated a substantial increase in inner:outer membrane ratio, whereas no cristae junctions were detected. In addition, mitochondria subsequently exhibited increased reactive oxygen species production and membrane potential. Although metabolic flux increased due to mitofilin deficiency, mitochondrial oxidative phosphorylation was not increased accordingly. We propose that mitofilin is a critical organizer of the mitochondrial cristae morphology and thus indispensable for normal mitochondrial function.  相似文献   

13.
Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA‐specific activator proteins and occurs on membrane‐associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome‐binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38RBD displays a 14‐3‐3‐like fold despite any similarity to 14‐3‐3‐proteins at the primary sequence level and thus represents the first 14‐3‐3‐like protein in mitochondria. The 14‐3‐3‐like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.  相似文献   

14.
In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.  相似文献   

15.
Zhang Y  Chan DC 《FEBS letters》2007,581(11):2168-2173
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.  相似文献   

16.
Dynamin-related membrane remodeling proteins regulate mitochondrial morphology by mediating fission and fusion. Although mitochondrial morphology is considered an important factor in maintaining mitochondrial function, a direct mechanistic link between mitochondrial morphology and function has not been defined. We report here a previously unrecognized cellular process of transient contraction of the mitochondrial matrix. Importantly, we found that this transient morphological contraction of mitochondria is accompanied by a reversible loss or decrease of inner membrane potential. Fission deficiency greatly amplified this phenomenon, which functionally exhibited an increase of inner membrane proton leak. We found that electron transport activity is necessary for the morphological contraction of mitochondria. Furthermore, we discovered that silencing the inner membrane-associated dynamin optic atrophy 1 (OPA1) in fission deficiency prevented mitochondrial depolarization and decreased proton leak without blocking mitochondrial contraction, indicating that OPA1 is a factor in coupling matrix contraction to mitochondrial depolarization. Our findings show that transient matrix contraction is a novel cellular mechanism regulating mitochondrial activity through the function of the inner membrane dynamin OPA1.  相似文献   

17.
<正>Dear Editor,Mitochondria acts as a cellular organelle that produces ATP and buffers Ca2+, and plays an important role in neuronal growth, survival and function[1]. Loss of mitochondria will make the ATP supply insufficient, resulting in synaptic transmission dysfunction[2]. Further, presynaptic mitochondrial dysfunctions are often associated with severe neurological diseases[3].  相似文献   

18.
Most mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with β-barrel shape, which is suggested to have evolved from a porin-type protein. To obtain structural insights in the absence of a crystal structure the membrane topology of Tom40 from Neurospora crassa was determined by limited proteolysis combined with mass spectrometry. The results were interpreted on the basis of a structural model that has been generated for NcTom40 by using the structure of mouse VDAC-1 as a template and amino acid sequence information of approximately 270 different Tom40 and approximately 480 VDAC amino acid sequences for refinement. The model largely explains the observed accessible cleavage sites and serves as a structural basis for the investigation of physicochemical properties of the ensemble of our Tom40 sequence data set. By this means we discovered two conserved polar slides in the pore interior. One is possibly involved in the positioning of a pore-inserted helix; the other one might be important for mitochondrial pre-sequence peptide binding as it is only present in Tom40 but not in VDAC proteins. The outer surface of the Tom40 barrel reveals two conserved amino acid clusters. They may be involved in binding other components of the TOM complex or bridging components of the TIM machinery of the mitochondrial inner membrane.  相似文献   

19.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

20.
Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60 kDa and 150 kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号