首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Words such as ''consciousness'' and ''self'' actually encompass a number of distinct phenomena that are loosely lumped together. The study of neurological syndromes allows us to explore the neural mechanisms that might underlie different aspects of self, such as body image and emotional responses to sensory stimuli, and perhaps even laughter and humour. Mapping the ''functional logic'' of the many different attributes of human nature on to specific neural circuits in the brain offers the best hope of understanding how the activity of neurons gives rise to conscious experience. We consider three neurological syndromes (phantom limbs, Capgras delusion and pain asymbolia) to illustrate this idea.  相似文献   

2.
Many neural circuits process information in multiple distinct modes. For example, the hippocampus is involved in memory encoding, retrieval, and consolidation processes. These different mnemonic computations require processing of differing balances of current sensory input and previously stored associations. Here we explore patterns of activity in hippocampal output area CA1 associated with different information processing states. We discuss the evidence linking these patterns to specific inputs to CA1 and describe behavioral factors that are related to the balance of synaptic drive. We suggest that understanding the factors that influence information flow in the hippocampal circuit could provide important new insights into how neural circuits are reconfigured on the fly to perform different functions at different times.  相似文献   

3.
Just-about-right (JAR) scales and attribute liking questions are usually used to study consumer perception of the sensory characteristics of food products. The aim of the present work was to compare the performance of attribute liking and JAR scales to evaluate consumers' perceived adequacy of flavor and texture of milk puddings. Two groups of consumers were asked to evaluate eight milk desserts using (1) overall liking followed by attribute liking for texture and flavor and (2) overall liking followed by JAR scales for thickness, creaminess, sweetness and vanilla flavor. Overall liking scores were significantly different when JAR scales or attribute liking questions were considered. Texture, flavor and overall liking scores were highly correlated to each other, providing the same information. JAR scales correlated better with the intensity of sensory attributes evaluated by a trained sensory panel, being JAR percentages a reliable tool to study the adequacy of sensory attributes.

PRACTICAL APPLICATIONS


Results from the present work showed that consumers might not be able to independently evaluate their liking of different sensory attributes of a product. For this reason, the use of attribute liking questions for studying the adequacy of sensory attributes in complex products would not be recommended. JAR scales were better indicators of the adequacy of sensory attributes. Consumers were able to independently evaluate texture and flavor attributes using JAR scales. However, the influence of JAR scales on overall liking scores should be taken into account when including these scales on consumer studies.  相似文献   

4.
Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit’s state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.  相似文献   

5.
We present below a simple hypothesis on what we believe is a characteristic of visual consciousness. It is derived from facts about the visual brain revealed in the past quarter of a century, but it relies most especially on psychophysical evidence which shows that different attributes of the visual scene are consciously perceived at different times. This temporal asynchrony in visual perception reveals, we believe, a plurality of visual consciousnesses that are asynchronous with respect to each other, reflecting the modular organization of the visual brain. We further hypothesize that when two attributes (e.g. colour and motion) are presented simultaneously, the activity of cells in a given processing system is sufficient to create a conscious experience of the corresponding attribute (e.g. colour), without the necessity for interaction with the activities of cells in other processing systems (e.g. motion). Thus, any binding of the activity of cells in different systems should be more properly thought of as a binding of the conscious experiences generated in each system.  相似文献   

6.
Rats use their large facial hairs (whiskers) to detect, localize and identify objects in their proximal three-dimensional (3D) space. Here, we focus on recent evidence of how object location is encoded in the neural sensory pathways of the rat whisker system. Behavioral and neuronal observations have recently converged to the point where object location in 3D appears to be encoded by an efficient orthogonal scheme supported by primary sensory-afferents: each primary-afferent can signal object location by a spatial (labeled-line) code for the vertical axis (along whisker arcs), a temporal code for the horizontal axis (along whisker rows), and an intensity code for the radial axis (from the face out). Neuronal evidence shows that (i) the identities of activated sensory neurons convey information about the vertical coordinate of an object, (ii) the timing of their firing, in relation to other reference signals, conveys information about the horizontal object coordinate, and (iii) the intensity of firing conveys information about the radial object coordinate. Such a triple-coding scheme allows for efficient multiplexing of 3D object location information in the activity of single neurons. Also, this scheme provides redundancy since the same information may be represented in the activity of many neurons. These features of orthogonal coding increase accuracy and reliability. We propose that the multiplexed information is conveyed in parallel to different readout circuits, each decoding a specific spatial variable. Such decoding reduces ambiguity, and simplifies the required decoding algorithms, since different readout circuits can be optimized for a particular variable.  相似文献   

7.
Katsov AY  Clandinin TR 《Neuron》2008,59(2):322-335
Motion vision is an ancient faculty, critical to many animals in a range of ethological contexts, the underlying algorithms of which provide central insights into neural computation. However, how motion cues guide behavior is poorly understood, as the neural circuits that implement these computations are largely unknown in any organism. We develop a systematic, forward genetic approach using high-throughput, quantitative behavioral analyses to identify the neural substrates of motion vision in Drosophila in an unbiased fashion. We then delimit the behavioral contributions of both known and novel circuit elements. Contrary to expectation from previous studies, we find that orienting responses to motion are shaped by at least two neural pathways. These pathways are sensitive to different visual features, diverge immediately postsynaptic to photoreceptors, and are coupled to distinct behavioral outputs. Thus, behavioral responses to complex stimuli can rely on surprising neural specialization from even the earliest sensory processing stages.  相似文献   

8.
This paper considers “importance” of sensory attributes from the consumer point of view, with emphasis on processed seafood. There are three key measures of importance. Attitudinal importance measures what consumers think to be important and refers to general opinions about the category. Sensory system importance measures how strongly different sensory inputs (e.g., appearance, aroma, taste, texture) “drive” overall liking, and show the key sensory inputs to which consumers attend. Attribute level importance measures the relation between sensory intensity and overall liking for each attribute. It shows which specific attributes drive liking, how liking varies with the specific sensory attribute, and whether (and at what sensory level) there exists an optimal level.  相似文献   

9.
10.
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of “circuit genetics”, where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.  相似文献   

11.
From single‐cell organisms to complex neural networks, all evolved to provide control solutions to generate context‐ and goal‐specific actions. Neural circuits performing sensorimotor computation to drive navigation employ inhibitory control as a gating mechanism as they hierarchically transform (multi)sensory information into motor actions. Here, the focus is on this literature to critically discuss the proposition that prominent inhibitory projections form sensorimotor circuits. After reviewing the neural circuits of navigation across various invertebrate species, it is argued that with increased neural circuit complexity and the emergence of parallel computations, inhibitory circuits acquire new functions. The contribution of inhibitory neurotransmission for navigation goes beyond shaping the communication that drives motor neurons, and instead includes encoding of emergent sensorimotor representations. A mechanistic understanding of the neural circuits performing sensorimotor computations in invertebrates will unravel the minimum circuit requirements driving adaptive navigation.  相似文献   

12.
It is generally acknowledged that biological vision presents nonlinear characteristics, yet linear filtering accounts of visual processing are ubiquitous. The template-matching operation implemented by the linear-nonlinear cascade (linear filter followed by static nonlinearity) is the most widely adopted computational tool in systems neuroscience. This simple model achieves remarkable explanatory power while retaining analytical tractability, potentially extending its reach to a wide range of systems and levels in sensory processing. The extent of its applicability to human behaviour, however, remains unclear. Because sensory stimuli possess multiple attributes (e.g. position, orientation, size), the issue of applicability may be asked by considering each attribute one at a time in relation to a family of linear-nonlinear models, or by considering all attributes collectively in relation to a specified implementation of the linear-nonlinear cascade. We demonstrate that human visual processing can operate under conditions that are indistinguishable from linear-nonlinear transduction with respect to substantially different stimulus attributes of a uniquely specified target signal with associated behavioural task. However, no specific implementation of a linear-nonlinear cascade is able to account for the entire collection of results across attributes; a satisfactory account at this level requires the introduction of a small gain-control circuit, resulting in a model that no longer belongs to the linear-nonlinear family. Our results inform and constrain efforts at obtaining and interpreting comprehensive characterizations of the human sensory process by demonstrating its inescapably nonlinear nature, even under conditions that have been painstakingly fine-tuned to facilitate template-matching behaviour and to produce results that, at some level of inspection, do conform to linear filtering predictions. They also suggest that compliance with linear transduction may be the targeted outcome of carefully crafted nonlinear circuits, rather than default behaviour exhibited by basic components.  相似文献   

13.
Sensory systems must solve the inverse problem of determining environmental events based on patterns of neural activity in the central nervous system that are affected by those environmental events. Different environmental events can give rise to indistinguishable patterns of neural activity, so that there will often, perhaps even always, be multiple solutions to a sensory inverse problem. Imaging strategies and brain organization confine these multiple solutions within a bounded set. Three different active strategies may be employed by animals to constrain the number of solutions to the sensory inverse problem: active generation of the energy (carrier) that stimulates receptors; reorientation of the point of view; and control of signal conditioning before transduction (pre-receptor mechanisms). This paper describes how these strategies are used in sensory-motor systems, using electric fish as a paradigmatic example. Carrier generation and receptor tuning to the carrier improve signal to noise ratio. Receptor tuning to different frequency bands of the carrier spectrum allows a sensory system to evaluate different kinds of carrier modulations and to extract the different features of objects in the environment. Pre-receptor mechanisms condition the signals, optimizing their detection at a foveal region where the sensory resolution is maximum. Active orientation of the sensory surface redirects the fovea to explore in detail the source of interesting signals. Sensory input generated by these active exploration mechanisms ('reafference') has two components: one, necessary, derived from the self-generated actions and another, contingent, consisting of the information obtained from the external world. Extracting environmental information ('exafference') requires that the self generated afference be subtracted from the sensory inflow. Such subtraction is often associated with the generation and storage of expectations about sensory inputs. It can be concluded that an animal's perceptual world and its ability to transform the world are inextricably linked. Understanding sensory systems must, therefore, always require understanding the organization of motor behavior.  相似文献   

14.
This paper presents a study of the attributes of margarine, showing the depth of information about consumer perceptions and drivers of liking that emerges from a detailed analysis of relations among attributes. The paper develops three sets of analyses to understand relations among attributes: principal components analysis in order to identify basic dimensions of perception, linear functions relating overall liking to attribute liking or to image ratings in order to identify drivers of liking, and quadratic functions that relate overall liking or image ratings to sensory attribute levels in order to identify optimal sensory levels and to create sensory preference segments. The analyses show how consumer data can generate learning about the consumer perceptions on the one hand, and guidance for product development.  相似文献   

15.
The visual brain consists of many different visual areas, which are functionally specialized to process and perceive different attributes of the visual scene. However, the time taken to process different attributes varies; consequently, we see some attributes before others. It follows that there is a perceptual asynchrony and hierarchy in visual perception. Because perceiving an attribute is tantamount to becoming conscious of it, it follows that we become conscious of different attributes at different times. Visual consciousness is therefore distributed in time. Given that we become conscious of different visual attributes because of activity at different, functionally specialized, areas of the visual brain, it follows that visual consciousness is also distributed in space. Therefore, visual consciousness is not a single unified entity, but consists of many microconsciousnesses.  相似文献   

16.
17.
Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.  相似文献   

18.
The neural correlates of visual awareness are elusive because of its fleeting nature. Here we have addressed this issue by using single trial statistical “brain reading” of neurophysiological event related (ERP) signatures of conscious perception of visual attributes with different levels of saliency. Behavioral reports were taken at every trial in 4 experiments addressing conscious access to color, luminance, and local phase offset cues. We found that single trial neurophysiological signatures of target presence can be observed around 300 ms at central parietal sites. Such signatures are significantly related with conscious perception, and their probability is related to sensory saliency levels. These findings identify a general neural correlate of conscious perception at the single trial level, since conscious perception can be decoded as such independently of stimulus salience and fluctuations of threshold levels. This approach can be generalized to successfully detect target presence in other individuals.  相似文献   

19.
Conditions under which either of two distinct activity patterns may arise from the same stimulus pattern are deduced for the case of a net-work which consists ofN simple circuits all jointed at a common synapse. If the product of the activity parameters of all the fibers in any circuit is called the activity parameter of the circuit, or, more briefly, the circuit parameter, then the condition for the existence of such mutually consistent activity patterns is that there be a sum of circuit paramaters which is not less than unity.  相似文献   

20.
This paper presents a set of analyses on sensory directional attributes used to rate experimentally designed pizza products. Consumers may or may not know the 'optimal' sensory level of attributes for pizza, so that the usefulness of the sensory directional varies by attribute. Furthermore, the sensory magnitude of each sensory directional attribute varies, as shown by the slope (B) relating the two attributes (Sensory Magnitude = A + B (Directional Rating)). The study incorporated sensory directionals into evaluation of products varied according to an experimental design. The optimal product emerging from the design does not necessarily exhibit a sensory directional profile where all attributes are 'on target', nor does a product whose sensory attributes are all on 'target' exhibit the highest level of liking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号