首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Histochemical analyses of the chemical structures of sugar sequences with or without blood group specificity were carried out by combined stepwise digestion of tissue sections with exo-and endoglycosidases and subsequent lectin stainings in formalin-fixed, paraffin-embedded human pancreas. In acinar cells from blood group A or AB secretor individuals, sequential digestion with -N-acetylgalactosaminidase and -L-fucosidase imparted reactivity with peanut agglutinin (PNA) in cells reactive with Dolichos biflorus agglutinin as well as those with Ulex europaeus agglutinin I(UEA-I). Simple fucosidase digestion imparted the PNA reactivity only in UEA-I reactive cells. Sequential digestion with -galactosidase and fucosidase likewise liberated the PNA binding sites in Griffonia simplicifolia agglutinin I-B4 reactive cells from blood group B and AB secretors. Sialidase digestion liberated the PNA binding sites not only in acinar cells but also intercalated duct cells, islet cells of Langerhans and endothelial cells. The PNA reactivity obtained by these enzyme digestions was eliminted by endo--N-acetylgalactosaminidase (endo-GalNAcdase) digestion. Preexisting PNA affinity in acinar cells from nonsecretors was also susceptible to endo-GalNAcdase treatment. Following the endo-GalNAcdase digestion, fucosidase or sialidase digestion recovered the PNA reactivity in acinar cells from nonsecretors. These results show that ABH determinants carried on O-glycosidically linked type 3 chain (D-galactose-(1-3)-N-acetyl-D-galactosamine1-serine or threonine) are secreted in pancreatic acinar cells and suggest that product coded by the secretor gene is required for the complete conversion of type 3 precursor chains into H determinants.  相似文献   

2.
We examined the effects of alpha-L-fucosidase digestion on lectin staining in formalin-fixed, paraffin-embedded human pancreatic tissue from individuals of different blood groups. Digestion with the enzyme resulted in apparent diminished intensity of Ulex europaeus agglutinin-I (UEA-I) staining in the acinar cells. In addition to the decreased intensity of UEA-I staining, reactivity with soybean agglutinin (SBA) was increased in the enzyme-susceptible, UEA-I-reactive cells. The intensity of Griffonia simplicifolia agglutinin-II (GSA-II) staining performed after beta-galactosidase digestion in UEA-I-reactive acinar cells was markedly increased by prior treatment with fucosidase. GSA-II staining following sequential digestion with fucosidase and galactosidase was completely abolished by subsequent digestion with beta-N-acetylhexosaminidase. These results therefore substantiate the previous assumption that SBA-reactive D-galactose-(beta 1-3,4)-N-acetyl-D-glucosamine and GSA-II reactive beta-N-acetyl-D-glucosamine imparted following galactosidase digestion represent precursors of H antigen. The present study further demonstrated that intense peanut agglutinin (PNA) staining was imparted after digestion with fucosidase in UEA-I-reactive sites in secretors. In contrast, nonsecretors showed vivid PNA staining that was usually detected throughout the pancreas without prior enzyme digestion. Here, fucosidase digestion had if any little effect on PNA staining. These results suggest that in secretors a terminal trisaccharide, fucosylated D-galactose-(beta 1-3)-N-acetyl-D-galactosamine exhibiting positive PNA reaction after fucosidase digestion, exists in UEA-I-reactive acinar cells. It is assumed that the secretor gene could control the step of final fucosylation of D-galactose-(beta 1-3)-N-acetyl-D-galactosamine in human pancreas.  相似文献   

3.
Effects of alpha-galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. beta-Galactosidase digestion following alpha-galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple beta-galactosidase digestion as well as sequential digestion with alpha- and beta-galactosidase. However, when alpha-L-fucosidase digestion procedure was inserted between alpha- and beta-galactosidase digestion, UEA-I staining imparted by alpha-galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with alpha-galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Using lectin staining methods in combination with exo- and endo-glycosidase digestion procedures, we analyzed the chemical structure of different types of blood group-related substances in serous cells of formalin-fixed, paraffin-embedded human submandibular glands. Serous cells produced only H antigen; A and B antigens were not present, and the expression of H antigen is dependent on the secretor status of the tissue donor. Although reactivity with Ulex europaeus agglutinin I (UEA-I) was not markedly reduced by alpha-L-fucosidase digestion, an affinity for peanut agglutinin (PNA) was seen after fucosidase digestion in the cells from secretors. In those from nonsecretors, no PNA reactivity appeared after enzyme digestion. On the other hand, sialidase digestion elicited PNA reactivity in serous cells irrespective of the donor's secretor status. PNA reactivity observed after fucosidase or sialidase digestion was susceptible to endo-alpha-N-acetylgalactosaminidase (endo-GalNAc-dase) digestion. SBA reactivity in UEA-I-negative cells from secretors, or in cells from fetuses and newborn infants, was markedly reduced by beta-galactosidase digestion. After galactosidase digestion, reactivity with Griffonia simplicifolia agglutinin II (GSA-II) appeared in the corresponding cells. This GSA-II reactivity was almost completely eliminated by subsequent beta-N-acetylhexosaminidase digestion. Whereas PNA reactivity in these cells was not reduced by beta-galactosidase treatment, it was significantly diminished by endo-GalNAc-dase digestion. These results suggest that at least two kinds of precursor disaccharides are produced in submandibular serous cells, i.e., SBA-reactive D-galactose-(beta 1-3,4)-N-acetyl-D-glucosamine and PNA-reactive D-galactose-(beta 1-3)-N-acetyl-D-galactosamine alpha 1-serine or threonine (O-glycosidically linked Type 3 chain or T antigen). Final fucosylation and synthesis of these two types of precursor chain appear to be under the control of the secretor gene.  相似文献   

5.
Summary Effects of -galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4(GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. -Galactosidase digestion following -galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple -galactosidase digestion as well as sequential digestion with - and -galactosidase. However, when -l-fucosidase digestion procedure was inserted between - and -galactosidase digestion, UEA-I staining imparted by -galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with -galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion. These results confirmed that the -galactosidase induced GSA-II reactivity and the fucosidase induced PNA reactivity are due to precursors of different kinds of blood-group determinants and suggest that at least two kinds of B antigen determinants, i.e. Gal(1-3)[Fuc(1-2)]Gal(1-3,4)GlcNac and Gal(1-3)-[Fuc(1-2)]Gal(1-3)GalNAc are produced in GSAI-B4 positive acinar cells. The synthesis of the latter type of B antigen is assumed to be controlled under the secretory gene in human pancreas.Abbreviation GalNAc N-acetyl-d-galactosamine - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Fuc l-fucose - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

6.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

7.
Summary Goblet cell mucin in 39 human colons was studied by methods specific for various sugar residues, including staining with three lectins,Dolichos biflorus agglutinin (DBA, specific for blood group A antigen),Griffonia simplicifolia agglutinin-I (GSA-I, B) and peanut agglutinin (PNA, T antigen), and immunostaining for A, B, H and T. Isoantigens A, B or H were found only in the right colon. GSA-I reactive goblet cells occurred in the right colon of both blood group A and B patients and possibly contained isoantigens. However DBA reactive cells were found in all cases. Prior neuraminidase digestion imparted anti-A, GSA-I and DBA reactivities to the cells lining the lower crypts in all cases. This pretreatment also imparted PNA and anti-T reactivities to goblet cells, only the latter reactivity being eliminated by galactose oxidase. Goblet cell mucin in transitional mucosa revealed decreased A and B, and increased H antigens. Enhanced galactose oxidase—Schiff (GOS) and anti-T reactivities were also noted. The present results revealed that some lectin reactions of goblet cells might be related to blood group antigens but others were not, and that different techniques for demonstrating reputedly the same sugar residues produced different results, indicating a need for proper evaluation of their specificity.  相似文献   

8.
In human pancreas, soybean agglutinin (SBA) conjugated to horseradish peroxidase reacted with the acinar cells secreting blood group A and/or H antigen, but not with those secreting only B antigen. For detailed histochemical characterization of SBA staining, the effects of treatment with unlabeled lectins and of digestion of certain enzymes on SBA staining were investigated in formalin-fixed, paraffin-embedded pancreatic tissue from individuals of different blood groups. Pre-incubation of sections with unlabeled Dolichos biflorus agglutinin to block A antigen eliminated subsequent SBA staining in the cells secreting A antigen, although failing to induce any effects in those secreting H antigen. In contrast, pre-incubation with unlabeled Ulex europaeus agglutinin-I (UEA-I) to block H antigen abolished SBA staining in cells secreting H antigen but not in those secreting A antigen. Treatment with galactose oxidase yielded the same results as those with unlabeled UEA-I, i.e., SBA reactivity was significantly diminished in cells secreting H antigen but not in those secreting A antigen. Digestion with beta-galactosidase resulted in a slight decrease of SBA staining in the cells secreting H antigen. Accompanying the decrease of SBA staining, reactivity with Griffonia simplicifolia agglutinin-II (GSA-II) appeared for the first time in the enzyme-susceptible, SBA-reactive cells secreting H antigen. Pre-treatment with galactose oxidase abolished this effect of beta-galactosidase. The GSA-II reactivity disclosed by treatment with galactosidase was completely eliminated by digestion with beta-N-acetylhexosaminidase, indicating that GSA-II staining after digestion with galactosidase is due to exposed penultimate beta-N-acetyl-D-glucosamine residues. These results demonstrate that at least two substances react with SBA in acinar cells of human pancreas, one being terminal beta-N-acetyl-D-galactosamine residues of A antigen, and the other being terminal beta-D-galactose-(1----3 or 1----4)-beta-N-acetyl-D-glucosamine dimers in the precursor of blood group H antigen. Such dimers may exist in close proximity to L-fucose residues of H antigen, since unlabeled UEA-I blocked SBA staining.  相似文献   

9.
Y Okamura 《Histochemistry》1990,94(5):489-496
Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Human von Willebrand factor (vWF) immobilized on a polyvinylidene difluoride membrane was subjected to binding assay with a series of horseradish peroxidase-conjugated lectins. The protein was reactive with concanavalin A, Ricinus communis agglutinin 120, wheat germ agglutinin and Ulex europaeus agglutinin I (UEA-I) but not with peanut agglutinin before sialidase treatment. These reactivities were consistent with the major oligosaccharide structure reported except for UEA-I. The reactivity with UEA-I was greatly decreased after digestion of the protein with either alpha-L-fucosidase or peptide-N-glycosidase F, but no significant decrease was observed after mild alkaline treatment or delipidation. vWF and UEA-I have been independently used as a good marker for human endothelial cells. Our results indicate that vWF itself contains UEA-I reactive sugar chains in its Asn-linked oligosaccharides.  相似文献   

11.
Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such asHelix pomatia agglutinin (HPA) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins andUlex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-β-galactosidase orN-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity withGriffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-β-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine,Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these lectins corresponded well to those stained with both HPA and GSAI-B4, and in some cases, with UEA-I. These results demonstrate that the binding sites of UEA-I, HPA, and GSAI-B4 are expressed concomitantly in the same carcinoma cells and all carry linear and branched poly-N-acetyllactosamine onN-glycans, suggesting that the synthesis of this complex carbohydrate is one of the most important and basic processes leading to the malignant transformation of cells, invasion, and metastasis of carcinoma cells.  相似文献   

12.
An immuno- and lectin-histochemical study was performed to investigate the aberrant expression of blood group-related antigens and poly-N- acetyllactosamine structures in squamous cell carcinomas of the maxillary sinus, the larynx, the apipharynx, the hypopharynx, the oral cavity, the parotid gland and the tonsil from 52 patients using monoclonal antibodies against A, B and H antigens, and six lectins, UEA-I, PNA, VVA-B4, PWM, LEA and DSA. In addition, GSA- II staining following endo-·-galactosidase digestion procedure was also applied. A, B and H antigens were expressed in most normal epithelial cells of head and neck organs, and depended on the patient blood type. However, in squamous cell carcinoma, A antigen was not detected in eight out of 25 individuals of blood groups A and AB, although B antigen was consistently expressed in carcinoma cells from all the B and AB individuals. On the other hand, H antigen was expressed in carcinoma cells not only from all blood group O individuals, but from 32 out of 35 individuals of blood groups A, B and AB. T and Tn antigens, which are recognized by PNA and VVA-B4, were strongly expressed in carcinoma cells from 40 and 42 out of 52 individuals respectively. Reactivity with GSA-II staining following endo-·-galactosidase digestion, which recognizes linear poly-N-acetyllactosamine structures, was found in a few malignant cells from 21 individuals. Staining with anti-A, -B and -H monoclonal antibodies and UEA-I lectin was diminished after endo-·-galactosidase digestion in some cases. Lectins specific for poly-N-acetyllactosamine, such as PWM, LEA and DSA, exhibited reactivity in some malignant cells from 30, 22 and 32 out of 52 individuals respectively. These results suggested that the expression of the blood group-related antigens is suppressed and immature carbohydrate chains, that is H, T and Tn antigens, are accumulated in squamous cell carcinomas of the head and neck. The results further suggested that poly-N-acetyllactosamine structures are simultaneously synthesized along with the deletion of A antigen and the accumulation of precursors This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), Glycine max agglutinin (SBA), Arachys hypogaea agglutinin (PNA)]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN) derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory granules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.  相似文献   

14.
Until now, carbohydrate antigens of human megakaryocytes have not been studied very extensively. For this reason, we investigated the staining pattern of 25 lectins and carbohydrate-specific monoclonal antibodies on paraffin-embedded trephine biopsies and acetone-fixed smears from patients with reactive and neoplastic bone marrow lesions. A biotin-streptavidin-alkaline phosphatase assay was used to visualize the binding of lectins or antibodies. Ulex europaeus agglutinin I (UEA-I) stained megakaryocytes in all cases tested. Monoclonal antibodies detecting fucosylated Lewis type 2 chain antigens (19-OLE, 12-4LE and LeuM1) were also reactive. Several lectins detecting backbone and core oligosaccharides [Helix pomatia agglutinin (HPA), peanut agglutinin (PNA), Erythrina cristagalli agglutinin (ECA), soybean agglutinin (SBA)] bound to megakaryocytes only after neuraminidase digestion. Moreover, we investigated human platelet lysates to gain some information about the carbohydrate residues of platelet glycoproteins which are synthesized by megakaryocytes. The carbohydrate expression of platelets showed striking similarities to that of megakaryocytes. Immunoblotting experiments revealed a strong binding of UEA-I, 19-OLE and 12-4LE to a band isographic to glycoprotein (gp) Ib. After desialylation of glycoproteins transblotted to nitrocellulose, ECA and PNA also reacted with a band of this molecular weight. Gp Ib is known to contain a mucin-like peptide core with a great number of potential O-glycosylation sites. Therefore, it is tempting to speculate that carbohydrate residues characterized in this study are involved in the complex biological interactions of gp Ib.  相似文献   

15.
Summary Twelve different kinds of blood group-specific lectins have been used along with monoclonal anti-A,-B and-H antibodies for detecting the corresponding antigens in selected human tissues. Although most of the lectins recognized the antigens in the tissue sections examined, they displayed marked differences in their recognition patterns in certain tissues.Helix asparsa agglutinin (HAA),Helix pomatia agglutinin (HPA) and monoclonal anti-A antibody recognized A antigens in the mucous cells of salivary glands from blood group A or AB nonsecretor as well as secretor individuals, whereasDolichos biflorus agglutinin (DBA).Griffonia simplicifolia agglutinin-I (GSA-I),Sophora japonica agglutinin (SJA) andVicia villosa agglutinin (VVA) did not bind to them from nonsecretors. A antigens in endothelial cells, lateral membrane of pancreatic acinar cells and small mucous-like cells of submandibular glands from some individuals were likewise recognized by HAA and HPA but not by other blood group A-specific lections. In contrast, both HAA and HPA did not recognize the A antigens in mucous cells of Brunner's glands while other A-specific lectins and monoclonal anti-A antibody reacted specifically with the antigens. Such a difference was not observed with lectins specific for blood group B. However, the B antigens in Brunner's glands were recognized by these lectins but not with monoclonal anti-B antibody. The difference in labelling ability was also noted among the blood group H-specific lectins and monoclonal anti-H antibody in endothelial cells of blood vessels.Ulex europaeus agglutinin-I reacted with these cells irrespective of ABO and the secretor status of the individuals, whileAnguilla anguilla agglutinin and monoclonal anti-H antibody reacted only with those cells from blood group O individuals. No reaction was observed withLotus tetragonolobus agglutinin in these tissue sites. These results suggest a great diversity of blood group antigens in different human tissues.  相似文献   

16.
Using lectin and colloidal iron (CI) stainings in combination with neuraminidase digestion, glycoconjugates on the surface of erythropoietic cells of the yolk sac and liver in fetal mice were examined. Fetal hepatic macrophages were capable of distinguishing between phagocytozed and non-phagocytozed erythroid elements as described in our previous study. Marked differences between these two elements could be ultrahistochemically detected on their cell surface. The phagocytozed elements, such as nuclei expelled from erythroblasts and degenerating primitive erythroblasts, faintly bound neuraminidase-sensitive CI, and neuraminidase digestion imparted a weak peanut agglutinin (PNA) binding. In contrast, erythroblasts at various maturation stages, erythrocytes and normal primitive erythroblasts heavily bound neuraminidase-sensitive CI, and neuraminidase digestion imparted a moderate PNA binding. No differences in binding of either concanavalin agglutinin,Ricinus communis agglutinin-I or PNA were noted between phagocytozed and non-phagocytozed erythroid elements. Desialylation appears to be one of the most important signs for the recognition mechanism of fetal macrophage phagocytosis. During maturation of hepatic erythroblasts, sialic acid changes its affinity forLimax flavus agglutinin from strong to weak, and soybean agglutinin binding sites disappear at the basophilic erythroblast stage. Glycoconjugates on polychromatophilic erythroblasts acquire similar compositions to those of erythrocytes.  相似文献   

17.
Summary Endo--galactosidase from Escherichia freundii cleaves polylactosaminyl structures as follows: R-GlcNAc1-3Gal1-4GlcNAc1-R + H2O R-GlcNAc1–3Gal + GlcNAc1-R. By staining with Griffonia simplicifolia agglutinin-II following the enzyme digestion, the distribution of R-GlcNAc1–3Gal1–4GlcNAc can be demonstrated in tissue sections. This carbohydrate chain is one of the backbone structures carrying the blood-group-related antigens and, thus, localization of this structure may provide detailed information about the distribution of variants with different backbone structures. Various formalin-fixed, paraffin-embedded tissue sections were stained by Griffonia simplicifolia agglutinin-II with or without prior enzyme digestion and the reactivity of the agglutinin imparted by enzyme digestion was studied in the following tissues and cells: pancreatic acinar cells, gastric surface mucosae, duct cells and mucous cells of salivary glands and tracheal glands, surface epithelium of trachea, goblet cells of large intestine, columnar epithelium of uterine cervical glands, distal and collecting tubules of kidney, certain cells of anterior lobe and colloid of middle lobe of pituitary glands, epithelial reticular cells and Hassall's corpuscles of thymus and Kupffer cells of liver. In gastric surface mucosae, the reactivity of the agglutinin appeared in non-secretor individuals but not in the secretor individuals, and in mucous cells of salivary and tracheal glands the reactivity appeared in Le(a - b -) non-secretor individuals but not in Le(a + b -) non-secretor or secretor individuals. In pancreatic acinar cells and duct cells of salivary glands from fetuses and newborn infants, prior fucosidase digestion markedly enhanced the Griffonia simplicifolia agglutinin-II reactivity elicited by endo--galactosidase digestion. Prior fucosidase digestion was also a prerequisite for revealing the reactivity of this agglutinin by endo--galactosidase digestion in gastric surface mucosae from secretor individuals. -Galactosidase digestion disclosed reactivity of this agglutinin in pancreatic acinar cells and duct cells of salivary glands even after the removal of endo--galactosidase-labile lactosamine structures by sequential digestion with endo--galactosidase and -N-acetylhexosaminidase. These results demonstrate that the procedures developed in this study provide a useful means for detecting different types of lactosamine structures which carry blood-group antigens in humans tissues.  相似文献   

18.
Paraffin sections of trachea, sublingual gland, and pancreas from rats, mice, and hamsters were stained with peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) conjugated to horseradish peroxidase before or after enzymatic removal of sialic acid. Adjacent sections were oxidized with periodate prior to incubation with sialidase and staining with PNA and DBA. PNA binding demonstrated terminal beta-galactose in secretions, at the basolateral plasmalemma of mouse tracheal serous cells, in or at the surface of zymogen granules, and at the apical and basolateral surface of mouse and hamster pancreatic acinar cells. Sialidase digestion revealed PNA binding, demonstrative of penultimate beta-galactose, in secretions of mucous cells in tracheal and sublingual glands and at the apical glycocalyx of ciliated and secretory cells in the tracheal surface epithelium of all the rodents studied. Sialidase also imparted PNA affinity to endothelium in all three species and to secretions and the basolateral plasmalemma of tracheal serous cells and pancreatic acinar cells in the rat. Periodate oxidation blocked the enzymatic removal of N-acetylneuraminic acid as judged by prevention of staining with the sialidase-PNA procedure. Sites in which periodate prevented sialidase-PNA staining included pancreatic islet cells and at the luminal glycocalyx of ciliated and secretory cells in tracheal surface epithelium in all three rodents, most sublingual mucous cells in the hamster, pancreatic acinar cells in the rat, and endothelium, except that of the rat. Glycoconjugate in other sites remained positive with the periodate-sialidase-PNA sequence. Resistance to periodate was interpreted as evidence for the presence of terminal sialic acid with an O-acetylated polyhydroxyl side chain. DBA binding demonstrated terminal alpha-N-acetylgalactosamine in the secretion of all mucous cells in the hamster trachea and 50-90% of those in the rat, secretion and the basolateral plasmalemma of all glandular serous cells in the mouse trachea, at the apical surface of most secretory cells lining the lumen of the rat and hamster trachea, and cilia of 5-10% of ciliated cells in the rat trachea. Periodate oxidation and sialidase digestion demonstrated N-acetylneuraminic acid and penultimate alpha-N-acetylgalactosamine in cilia in the mouse trachea and sialic acid containing O-acetylated polyhydroxyl side chains subtended by N-acetylgalactosamine in the secretion of all mucous cells in the rat and hamster trachea and of 80-90% of mucous cells in the hamster sublingual gland.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
We examined the distribution of blood group-related antigens using an indirect immunoperoxidase method with monoclonal antibodies (MAb) directed to A, B, H, Lewis a (Lea), Lewis b (Leb), Lewis x (Lex), and Lewis y (Ley) antigens and Type 1 precursor chain in human pancreas. Effects of prior digestion with exoglycosidases on MAb stainings were simultaneously investigated. A, B, H, Leb, and Ley antigens were detected in acinar cells and interlobular duct cells but not in centroacinar cells, intercalated duct cells, and islet of Langerhans cells. The expression of these antigens in acinar cells was not dependent on Lewis type and secretor status of the tissue donors, whereas that in interlobular duct cells was strictly dependent on secretor status. The distribution pattern of these antigens in acinar cells was not homogeneous, i.e., cells producing H antigens expressed both Leb and Ley antigens but not A or B antigens, whereas those producing A or B antigens did not secrete Leb and Ley as well as H antigens. Digestion with alpha-N-acetylgalactosaminidase or alpha-galactosidase resulted in the appearance of Leb and Ley antigens as well as H antigen in acinar cells producing A and/or B antigens. Type 1 precursor chain was not detected in pancreatic tissues from secretors but appeared in acinar cells producing H antigen after alpha-L-fucosidase digestion, which also disclosed Lex but not Lea antigen in acinar cells expressing both Leb and Ley. In some non-secretors, MAb against Type 1 precursor chain reacted with acinar cells without enzyme digestion. Although Lea antigen was not detected in acinar cells, it was found in centroacinar cells, intercalated duct cells, and interlobular duct cells from all individuals examined except two Le(a-b-) secretors. After sialidase digestion, Lex antigen appeared in centroacinar and intercalated duct cells from some individuals. Sialidase digestion also elicited reactivity with MAb against Type 1 precursor chain in islet of Langerhans cells from some individuals. These results demonstrate the complexity in the pattern of expression and regulation of blood group-related antigens in different cell types of human pancreas. Such complexity may largely be ascribed to differences in individual genotypes and in gene expression patterns of different cell types.  相似文献   

20.
Summary The reactivity was examined of horseradish peroxidase labelledUlex europaeus agglutinin-I (UEA-I) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) with red blood cells and vascular endothelium in formalin-fixed, paraffin embedded tissues from 18 primate species. The expression of blood group ABH antigens in these cells as well as secretions from other tissues was also examined by the indirect immunoperoxidase method using monoclonal anti-ABH antibodies as primary antibodies. In Prosimians and New World monkeys which lack ABH antigens on both red blood cells and endothelial cells, but produce these antigens in other tissue secretions, GSAI-B4 always reacted with both red blood cells and endothelial cells. In Old World monkeys, which express blood group antigens on endothelial cells but not on red blood cells, neither GSAI-B4 nor UEA-I reactivity were observed, except the endothelial cells from blood group B or O individuals occasionally reacted with GSAI-B4 or UEA-I, respectively. Although UEA-I reactivity was not observed in the endothelial cells of gibbon, it reacted with these cells from chimpanzees. In these two anthropoid apes, both endothelial cells and red blood cells expressed ABH antigens as in humans. These results suggest the close evolutionary relationship between the expression of blood group ABH antigens and lectin binding properties of red blood cells and endothelial cells in primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号