首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some BK channels are activated in response to membrane stretch. However, it remains largely unknown which membrane component transmits forces to the channel and which part of the channel senses the force. Recently, we have shown that a BK channel cloned from chick heart (named SAKCa channel) is a stretch activated channel, while deletion of a 59 amino acids splice insert (STREX) located in the cytoplasmic side, abolishes its stretch-sensitivity. This finding raised a question whether stress in the bilayer is crucial for the mechanical activation of the channel. To address this question we examined the effects of membrane perturbing amphipaths on the stretch activation of the SAKCa channel and its STREX-deletion mutant. We found that both anionic amphipath trinitrophenol (TNP) and cationic amphipath chlorpromazine (CPZ) could dose-dependently activate the channel by leftward shifting the voltage activation curve when applied alone. In contrast, TNP and CPZ compensated each other's effect when applied sequentially. These results can be understood in the framework of the bilayer couple hypothesis, suggesting that stress in the plasma membrane can activate the SAKCa channel. Interestingly, the STREX-deletion mutant channel has much less sensitivity to the amphipaths, suggesting that STREX acts as an intermediate structure that can indirectly convey stress in the membrane to the gate of the SAKCa channel via an unidentified membrane associated protein(s) that can detect or transmit stress in the membrane.  相似文献   

2.
Activation of mechanosensitive currents in traumatized membrane   总被引:9,自引:0,他引:9  
Mechanosensitive (MS) channels, ones whose open probabilityvaries with membrane tension in patch recordings, are diverse andubiquitous, yet many are remarkably insensitive to mechanical stimuliin situ. Failure to elicit mechanocurrents from cells with abundant MSchannels suggests that, in situ, the channels are protected frommechanical stimuli. To establish what conditions affect MS channelgating, we monitored Lymnaea neuronstretch-activated K (SAK) channels in cell-attached patches afterdiverse treatments. Mechanosensitivity was gauged by rapidity of onsetand extent of channel activation during a step pressure applied to a"naive" patch. The following treatments enhancedmechanosensitivity: actin depolymerization (cytochalasin B),N-ethylmaleimide, an inhibitor ofATPases including myosin, elevated Ca (using A-23187), and osmoticswelling (acutely and after 24 h). Osmotic shrinking decreased mechanosensitivity. A unifying interpretation is that traumatized cortical cytoskeleton cannot prevent transmission of mechanical stimulito plasma membrane channels. Mechanoprotection and capricious mechanosensitivity are impediments to cloning efforts with MS channels.We demonstrate a potpourri of endogenous MS currents fromL-M(TK) fibroblasts;others had reported these cells to be MS current null and hence to besuitable for expressing putative MS channels.  相似文献   

3.
MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.  相似文献   

4.
Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, shifting the conductance/voltage relationship by >100 mV. Probing the mechanism of action, we discover that the BK channel can be activated in the absence of divalent cations (Ca2+, Mg2+), suggesting that the mallotoxin mechanism of action involves the voltage-dependent gating of the channel. Mallotoxin-activated channels remain incrementally sensitive to Ca2+ and beta subunits. In comparison to other small hydrophobic poisons, anesthetic agents, and protein toxins that inhibit ion channel activity, mallotoxin potently activates channel activity. In certain respects, mallotoxin acts as a BK channel beta1 subunit mimetic, preserving BK channel Ca2+ sensitivity yet adjusting the set-point for BK channel activation to a more hyperpolarized membrane potential.  相似文献   

5.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

6.
Mechanotransduction is required for a wide variety of biological functions. The aim of this study was to determine the effect of activation of a mechanosensitive Ca(2+) channel, present in human jejunal circular smooth muscle cells, on whole cell currents and on membrane potential. Currents were recorded using patch-clamp techniques, and perfusion of the bath (10 ml/min, 30 s) was used to mechanoactivate the L-type Ca(2+) channel. Perfusion resulted in activation of L-type Ca(2+) channels and an increase in outward current from 664 +/- 57 to 773 +/- 72 pA at +60 mV. Membrane potential hyperpolarized from -42 +/- 4 to -50 +/- 5 mV. In the presence of nifedipine (10 microM), there was no increase in outward current or change in membrane potential with perfusion. In the presence of charybdotoxin or iberiotoxin, perfusion of the bath did not increase outward current or change membrane potential. A model is proposed in which mechanoactivation of an L-type Ca(2+) channel current in human jejunal circular smooth muscle cells results in increased Ca(2+) entry and cell contraction. Ca(2+) entry activates large-conductance Ca(2+)-activated K(+) channels, resulting in membrane hyperpolarization and relaxation.  相似文献   

7.
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

8.
Patch clamp method in cell-attached configuration was used to search for mechanogated ion channels in plasma membrane of human myeloid leukemia K562 cells. A reversible activation of transmembrane currents in response to negative pressure applied to membrane patch was observed. Four types of mechanosensitive channels were identified in K562 cells: two main types were characterized with conductance values of 16 and 25 pS; while two others, showing higher conductance values (about 35 and 50 pS), were rarely met. In terms of gating, all channels described here could be assigned to the stretch-activated type. No inactivation of mechanosensitive channels at the sustained stimulation was observed. The activation of mechanosensitive channels in K562 cells was not dependent upon the presence of bivalent cations in the extracellular solution.  相似文献   

9.
Curcumin, a natural compound isolated from the rhizome of turmeric, has been shown to have antibacterial properties. It has several physiological effects on bacteria including an apoptosis-like response involving RecA, membrane permeabilization, inhibiting septation, and it can also work synergistically with other antibiotics. The mechanism by which curcumin permeabilizes the bacterial membrane has been unclear. Most bacterial species contain a Mechanosensitive channel of large conductance, MscL, which serves the function of a biological emergency release valve; these large-pore channels open in response to membrane tension from osmotic shifts and, to avoid cell lysis, allow the release of solutes from the cytoplasm. Here we show that the MscL channel underlies the membrane permeabilization by curcumin as well as its synergistic properties with other antibiotics, by allowing access of antibiotics to the cytoplasm; MscL also appears to have an inhibitory role in septation, which is enhanced when activated by curcumin.  相似文献   

10.
MscL, a mechanosensitive channel found in many bacteria, protects cells from hypotonic shock by reducing intracellular pressure through release of cytoplasmic osmolytes. First isolated from Escherichia coli, this protein has served as a model for how a protein senses and responds to membrane tension. Recently the structure of a functionally uncharacterized MscL homologue from Mycobacterium tuberculosis was solved by x-ray diffraction to a resolution of 3.5 A. Here we demonstrate that the protein forms a functional MscL-like mechanosensitive channel in E. coli membranes and azolectin proteoliposomes. Furthermore, we show that M. tuberculosis MscL crystals, when re-solubilized and reconstituted, yield wild-type channel currents in patch clamp, demonstrating that the protein does not irreversibly change conformation upon crystallization. Finally, we apply functional clues acquired from the E. coli MscL to the M. tuberculosis channel and show a mechanistic correlation between these channels. However, the inability of the M. tuberculosis channel to gate at physiological membrane tensions, demonstrated by in vivo E. coli expression and in vitro reconstitution, suggests that the membrane environment or other additional factors influence the gating of this channel.  相似文献   

11.
The accurate biological function of mechanosensitive (MS) channels is crucial for maintaining the viability of living cells. For instance, in vascular endothelial cells, calcium influx from the extracellular environment into cytoplasm is regulated by stretch-activated channels. However, the mechanism by which cells sense force remains unclear. For this study, we hypothesized that gating of ion channels is simply regulated by the direct mechanical stress induced in a membrane. We modeled a membrane channel using crystallographic data of the bacteria Mycobacterium tuberculosis (Tb-MscL) because MscL homologs are integral membrane proteins with sequence similarity to most known ion channels. Molecular dynamics (MD) simulations were performed to elucidate the gating mechanism of the channel protein in response to the fluid shear stress. Results suggest that the stretched membrane drives the interfacial part of the protein–membrane complex to expand and maintains the stability of the constricted part of the transmembrane pore. Moreover, structural similarities between Tb-MscL and the family of ligand-gated ion channels suggest that the conformational change of this model in response to fluid shear stress is useful for modeling the gating mechanism in a broad class of gated channels.  相似文献   

12.
Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox‐balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch‐activated ion channel with a slight preference for anions and provides protection against hypo‐osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo‐osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1‐1 mutants under moderate heat‐ and heavy‐metal‐stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions.  相似文献   

13.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   

14.
To explore the potential function of the BK channel in the inner mitochondrial membrane under physiological and hypoxic conditions, we used on-mitoplast and whole-mitoplast patches. Single BK channels had a conductance of 276+/-9 pS under symmetrical K(+) solutions, were Ca(2+)- and voltage-dependent and were inhibited by 0.1 microM charybdotoxin. In response to hypoxia, BK increased open probability, shifted its reversal potential (9.3+/-2.4 mV) in the positive direction and did not change its conductance. We conclude that (1) the properties at rest of this mitoplast K(+) channel are similar to those of BK channels in the plasma membrane; (2) hypoxia induces an increase, rather than a decrease (as in the plasmalemma), in the open probability of this K(+) channel, leading to K(+) efflux from the mitochondrial matrix to the outside. We speculate that this increase in K(+) efflux from mitochondria into the cytosol is important during hypoxia in maintaining cytosolic K(+).  相似文献   

15.
The TM1 domain of the large conductance mechanosensitive (MS) channel of Escherichia coli was used as a genetic probe to search the genomic database of the archaeon Methanoccoccus jannashii for MscL homologs. We report that the hypothetical protein MJ0170 of M. jannashii exhibited 38.5% sequence identity with the TM1 domain of Eco-MscL. Moreover, MJ0170 was found to be a conserved homolog of MscS, the second type of E. coli MS channel encoded by the yggB gene. Furthermore, we identified a cluster of charged residues KIKEE in the C-terminus of MJ0170 that strikingly resembled the charged C-terminal amino acid cluster present in Eco-MscL (RKKEE). We cloned and expressed MJ0170 in E. coli, which when reconstituted into liposomes or expressed in the cell membrane of giant E. coli spheroplasts, exhibited similar activity to the bacterial MS channels. Our study suggests that the M. jannashii MS channel and its homologs evolved as a result of gene duplication of the ancestral MscL-like molecule with the TM1 domain remaining the most conserved structural motif among prokaryotic MS channels.  相似文献   

16.
Powl AM  Wright JN  East JM  Lee AG 《Biochemistry》2005,44(15):5713-5721
The hydrophobic thickness of a membrane protein is an important parameter, defining how the protein sits within the hydrocarbon core of the lipid bilayer that surrounds it in a membrane. Here we show that Trp scanning mutagenesis combined with fluorescence spectroscopy can be used to define the hydrophobic thickness of a membrane protein. The mechanosensitive channel of large conductance (MscL) contains two transmembrane alpha-helices, of which the second (TM2) is lipid-exposed. The region of TM2 that spans the hydrocarbon core of the bilayer when MscL is reconstituted into bilayers of dioleoylphosphatidylcholine runs from Leu-69 to Leu-92, giving a hydrophobic thickness of ca. 25 A. The results obtained using Trp scanning mutagenesis were confirmed using Cys residues labeled with the N-methyl-amino-7-nitroben-2-oxa-1,3-diazole [NBD] group; both fluorescence emission maxima and fluorescence lifetimes for the NBD group are sensitive to solvent dielectric constant over the range (2-40) thought to span the lipid headgroup region of a lipid bilayer. Changing phospholipid fatty acyl chain lengths from C14 and C24 results in no significant change for the fluorescence of the interfacial residues, suggesting very efficient hydrophobic matching between the protein and the surrounding lipid bilayer.  相似文献   

17.
Transmembrane channel-like protein isoform 1 (TMC1) is essential for the generation of mechano-electrical transducer currents in hair cells of the inner ear. TMC1 disruption causes hair cell degeneration and deafness in mice and humans. Although thought to be expressed at the cell surface in vivo, TMC1 remains in the endoplasmic reticulum when heterologously expressed in standard cell lines, precluding determination of its roles in mechanosensing and pore formation. Here, we report that the KCNQ1 Kv channel forms complexes with TMC1 and rescues its surface expression when coexpressed in Chinese Hamster Ovary cells. TMC1 rescue is specific for KCNQ1 within the KCNQ family, is prevented by a KCNQ1 trafficking-deficient mutation, and is influenced by KCNE β subunits and inhibition of KCNQ1 endocytosis. TMC1 lowers KCNQ1 and KCNQ1-KCNE1 K+ currents, and despite the surface expression, it does not detectably respond to mechanical stimulation or high salt. We conclude that TMC1 is not intrinsically mechano- or osmosensitive but has the capacity for cell surface expression, and requires partner protein(s) for surface expression and mechanosensitivity. We suggest that KCNQ1, expression of which is not thought to overlap with TMC1 in hair cells, is a proxy partner bearing structural elements or a sequence motif reminiscent of a true in vivo TMC1 hair cell partner. Discovery of the first reported strategy to rescue TMC1 surface expression should aid future studies of the TMC1 function and native partners.  相似文献   

18.
Covalent modification of integral membrane proteins with amphiphiles may provide a general approach to the conversion of membrane proteins into water-soluble forms for biophysical and high-resolution structural studies. To test this approach, we mutated four surface residues of the pentameric Mycobacterium tuberculosis mechanosensitive channel of large conductance (MscL) to cysteine residues as anchors for amphiphile attachment. A series of modified ion channels with four amphiphile groups attached per channel subunit was prepared. One construct showed the highest water solubility to a concentration of up to 4mg/ml in the absence of detergent. This analog also formed native-like, alpha-helical homo-pentamers in the absence of detergent as judged by circular dichroism spectroscopy, size-exclusion chromatography and various light-scattering techniques. Proteins with longer, or shorter polymers attached, or proteins modified exclusively with polar cysteine-reactive small molecules, exhibited reduced to no solubility and higher-order aggregation. Electron microscopy revealed a homogeneous population of particles consistent with a pentameric channel. Solubilization of membrane proteins by covalent attachment of amphiphiles results in homogeneous particles that may prove useful for crystallization, solution NMR spectroscopy, and electron microscopy.  相似文献   

19.
Jeon J  Voth GA 《Biophysical journal》2008,94(9):3497-3511
The mechanosensitive channel of large conductance (MscL) belongs to a family of transmembrane channel proteins in bacteria and functions as a safety valve that relieves the turgor pressure produced by osmotic downshock. MscL gating can be triggered solely by stretching of the membrane. This work reports an effort to understand this mechanotransduction by means of molecular dynamics (MD) simulation on the MscL of mycobacterium tuberculosis embedded in a palmitoyloleoylphosphatidylethanolamine membrane. Equilibrium MD under zero membrane tension produced a more compact protein structure, as measured by its radii of gyration, compared to the crystal structure, in agreement with previous experimental findings. Even under a large applied tension up to 1000 dyn/cm, the MscL lateral dimension largely remained unchanged after up to 20 ns of simulation. A nonequilibrium MD simulation of 3% membrane expansion showed a significant increase in membrane rigidity upon MscL inclusion, which can contribute to efficient mechanotransduction. Direct observation of channel opening was possible only when an explicit lateral bias force was applied to each of the five subunits of MscL in the radially outward direction. Using this force, open structures with a large pore of radius 10 Å could be obtained. The channel opening takes place in a stepwise manner and concurrently with the water chain formation across the channel, which occurs without direct involvement of protein hydrophilic residues. The N-terminal S1 helices stabilize the open structure, and the membrane asymmetry (different lipid density on the two leaflets of membrane) promotes channel opening.  相似文献   

20.
GsMTx-4, a polypeptide from the spider Grammostola spatulata, is an inhibitor of mechanosensitive channels. It is known to interact with lipid membranes, suggesting it partitions into the membrane to alter the channel gating, but the effect of the membrane charge on GsMTx-4 activity remains unknown. In this study, we found that GsMTx-4 more effectively interacts with anionic lipids than zwitterionic ones. The effect of GsMTx-4 on negatively charged membranes was similar to that of the antimicrobial peptide melittin, which led us to assess GsMTx-4's antimicrobial activity. Interestingly, we found that, in contrast to other neurotoxins, GsMTx-4 exhibited antimicrobial properties and was more active against Gram-positive than Gram-negative bacteria. These results suggest that GsMTx-4 exerts its antimicrobial effect by altering the packing of the membrane and/or inhibiting mechanosensitive channels. These findings could point the way towards a new class of antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号