共查询到20条相似文献,搜索用时 0 毫秒
1.
Hye-Lim KimMi-Bee Park Yumin KimYun Gyeong Yang Soo-Woong LeeNingning Zhuang Kon Ho Lee Young Shik Park 《FEBS letters》2012,586(20):3596-3600
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.
Structured summary of protein interactions
dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4) 相似文献2.
Yasuo Aizono Masaru Funatsu Yukio Fujiki Masayoshi Watanabe 《Bioscience, biotechnology, and biochemistry》2013,77(2):317-324
A species of rice bran lipase (lipase II) was purified by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-cellulose, Sephadex G–75 and CH-Sephadex C–50. Both polyacrylamide disc electrophoresis and ultracentrifugation demonstrated that the enzyme protein is homogeneous. The isoelectric point of the enzyme was 9.10 by ampholine electrophoresis. The sedimentation coefficient of the enzyme was evaluated to be 2.60 S, and the molecular weight to be 33,300 according to Archbald’s method. The enzyme showed the optimum pH between 7.5 and 8.0, and the optimum temperature at about 27°C. It was stable over the pH range from 5 to 9.5 and below 30°C. In substrate specificity, the enzyme exhibited a high specificity toward triglycerides having short-carbon chain fatty acids, although it was capable of hydrolyzing the ester bonds in the rice and olive oil. 相似文献
3.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium. 相似文献
4.
Sabin C Mitchell EP Pokorná M Gautier C Utille JP Wimmerová M Imberty A 《FEBS letters》2006,580(3):982-987
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity. 相似文献
5.
Yuji Terami Keiko Uechi Saki Nomura Naoki Okamoto Kenji Morimoto 《Bioscience, biotechnology, and biochemistry》2013,77(10):1725-1729
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively. 相似文献
6.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria. 相似文献
7.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects. 相似文献
8.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding. 相似文献
9.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed. 相似文献
10.
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases. 相似文献
11.
Usvalampi A Turunen O Valjakka J Pastinen O Leisola M Nyyssölä A 《Enzyme and microbial technology》2012,50(1):71-76
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%. 相似文献
12.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements. 相似文献
13.
dTDP-l-rhamnose (dTDP-Rha)-synthesizing dTDP-6-deoxy-l-lyxo-4-hexulose reductase (4-KR) and dTDP-Rha 4-epimerase were characterized from Burkholderia thailandensis E264 by utilizing rmlDBth (BTH_I1472) and wbiBBth (BTH_I1476), respectively. Incubation of the recombinant WbiBBth with RmlA/RmlB/RmlC/Tal, which has previously been shown to generate dTDP-6-deoxy-l-talose (dTDP-6dTal) from α-d-glucose-1-phosphate, dTTP, and NADPH, produced dTDP-Rha. 1H NMR measurements confirmed that both RmlA/RmlB/RmlC/Tal/WbiBBth and RmlA/RmlB/RmlC/RmlD produced dTDP-Rha. WbiBBth alone produced dTDP-Rha when incubated with dTDP-6dTal. This is the first report to demonstrate epimerase activity interconverting between dTDP-Rha and dTDP-6dTal. 相似文献
14.
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation. 相似文献
15.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule. 相似文献
16.
Takashi Suzuki Masahiko Morita Toshio Hayashi 《Bioscience, biotechnology, and biochemistry》2017,81(2):372-375
We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined. 相似文献
17.
In order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles. 相似文献
18.
Furuichi M Suzuki N Dhakshnamoorhty B Minagawa H Yamagishi R Watanabe Y Goto Y Kaneko H Yoshida Y Yagi H Waga I Kumar PK Mizuno H 《Journal of molecular biology》2008,378(2):436-446
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes. 相似文献
19.
Saponification of 5-azido-5-deoxy-D-pentonolactones (ribo-, arabino-, xylo-) with NaOH gave the corresponding 5-azido-5-deoxyaldonic acids sodium salts which, after regeneration of the acid form followed by catalytic reduction, led to the target compounds in 98% overall yields. 相似文献
20.
ABSTRACTAn N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain. 相似文献