首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the permeability of canine pleural mesothelium, visceral and intercostal parietal pleura from mongrel dogs was carefully stripped from the underlying tissue and mounted as a planar sheet in a Ussing-type chamber. The hydraulic conductivity (Lp) was determined from the rate of volume flux in response to hydrostatic pressure gradients applied to either the mucosal or serosal surface of the pleural membrane. The diffusional permeability (Pd) of radiolabeled water, sucrose, inulin, and albumin was determined under equilibrium conditions from the unidirectional tracer flux. The Lp of the visceral pleura was 0.39 +/- 0.032 (SE) X 10(-4) ml.s-1.cmH2O-1.cm-2 and that Lp of parietal pleura was 1.93 +/- 0.93 X 10(-4) ml.s-1.cmH2O-1.cm-2 (P less than 0.001). The Pd of the visceral pleura ranged from 12.21 +/- 0.45 X 10(-4) cm/s for 3H2O to 0.34 +/- 0.03 X 10(-4) cm/s for [3H]albumin. The Pd of the parietal pleura for water and sucrose was similar to that of the visceral membrane, whereas its Pd for the larger inulin and albumin molecules was greater than that of visceral pleura (P less than 0.01). A spontaneous potential difference could not be detected across either membrane. The relatively higher parietal pleural Lp and Pd for larger solutes is probably due to the presence of stomata in this membrane. These results indicate that both the parietal and the visceral pleura are extremely permeable tissues which offer little resistance to water and solute flux.  相似文献   

2.
A root pressure probe has been used to measure the root pressure (Pr) exerted by excised main roots of young maize plants (Zea Mays L.). Defined gradients of hydrostatic and osmotic pressure could be set up between root xylem and medium to induce radial water flows across the root cylinder in both directions. The hydraulic conductivity of the root (Lpr) was evaluated from root pressure relaxations. When permeating solutes were added to the medium, biphasic root pressure relaxations were observed with water and solute phases and root pressure minima (maxima) which allowed the estimation of permeability (PSr) and reflection coefficients (σsr) of roots. Reflection coefficients were: ethanol, 0.27; mannitol, 0.74; sucrose, 0.54; PEG 1000, 0.82; NaCl, 0.64; KNO3, 0.67, and permeability coefficients (in 10−8 meters per second): ethanol, 4.7; sucrose, 1.6; and NaCl, 5.7. Lpr was very different for osmotic and hydrostatic gradients. For hydrostatic gradients Lpr was 1·10−7 meters per second per megapascal, whereas in osmotic experiments the hydraulic conductivity was found to be an order of magnitude lower. For hydrostatic gradients, the exosmotic Lpr was about 15% larger than the endosmotic, whereas in osmotic experiments the polarity in the water movement was reversed. These results either suggest effects of unstirred layers at the osmotic barrier in the root, an asymmetrical barrier, and/or mechanical effects. Measurements of the hydraulic conductivity of individual root cortex cells revealed an Lp similar to Lpr (hydrostatic). It is concluded that, in the presence of external hydrostatic gradients, water moves primarily in the apoplast, whereas in the presence of osmotic gradients this component is much smaller in relation to the cell-to-cell component (symplasmic plus transcellular transport).  相似文献   

3.
Osmotic water permeability of human red cells   总被引:2,自引:2,他引:0       下载免费PDF全文
The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.  相似文献   

4.
Effects of low temperature (8 degrees C) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber, Cucumis sativus L.) and a chilling-resistant (figleaf gourd, Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, Lp(r)) and of individual cortical cells (cell hydraulic conductivity, Lp). Exposure of roots to low temperature (LRT) for up to 6 d caused a stronger suberization of the endodermis in cucumber compared with figleaf gourd, but no development of exodermal Casparian bands in either species. Changes in anatomy after 6 d of LRT treatment corresponded with a reduction in hydrostatic root Lp(r) of cucumber roots by a factor of 24, and by a factor of 2 in figleaf gourd. In figleaf gourd, there was a reduction only in hydrostatic Lp(r) but not in osmotic Lp(r) suggesting that the activity of water channels was not much affected by LRT treatment in this species. Changes in cell Lp in response to chilling and recovery were similar to the root levels, although they were more intense at the root level. Activation energies (E(a)) and Q10 of water flow as measured at the cell level were high in cucumber (E(a)=109+/-13 kJ mol(-1); Q(10)=4.8+/-0.7; n=6-10 cells), but small in figleaf gourd (E(a)=11+/-2 kJ mol(-1); Q10=1.2+/-0.1; n=6-10 cells). Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (at both the root and cell level) often resulted in Lp and Lp(r) values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger for osmotic (representing the cell-to-cell passage of water) than for hydrostatic Lp(r). After a short-term (1 d) exposure to 8 degrees C followed by 1 d at 20 degrees C, hydrostatic Lp(r) of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. By contrast, osmotic Lp(r) and cell Lp in both species remained high by a factor of 3 compared with the control, possibly due to an increased activity of water channels. After preconditioning of roots at LRT, increased hydraulic conductivity was completely inhibited by HgCl2 at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins (AQPs) and alterations of root anatomy determine the water uptake in both species. The high temperature dependence of cell Lp in cucumber suggests conformational changes of AQPs during LRT treatment which result in channel closure and in a strong gating of AQP activity by low temperature. This mechanism is thought to be different from that in figleaf gourd where AQPs reacted in the conventional way, i.e. low temperature affected the mobility of water molecules in AQPs rather than their open/closed state, and Q(10) was low.  相似文献   

5.
Osmotic transient responses in organ weight after changes in perfusate osmolarity have implied steric hindrance to small-molecule transcapillary exchange, but tracer methods do not. We obtained osmotic weight transient data in isolated, Ringer-perfused rabbit hearts with NaCl, urea, glucose, sucrose, raffinose, inulin, and albumin and analyzed the data with a new anatomically and physicochemically based model accounting for 1) transendothelial water flux, 2) two sizes of porous passages across the capillary wall, 3) axial intracapillary concentration gradients, and 4) water fluxes between myocytes and interstitium. During steady-state conditions approximately 28% of the transcapillary water flux going to form lymph was through the endothelial cell membranes [capillary hydraulic conductivity (Lp) = 1.8 +/- 0.6 x 10-8 cm. s-1. mmHg-1], presumably mainly through aquaporin channels. The interendothelial clefts (with Lp = 4.4 +/- 1.3 x 10-8 cm. s-1. mmHg-1) account for 67% of the water flux; clefts are so wide (equivalent pore radius was 7 +/- 0.2 nm, covering approximately 0.02% of the capillary surface area) that there is no apparent hindrance for molecules as large as raffinose. Infrequent large pores account for the remaining 5% of the flux. During osmotic transients due to 30 mM increases in concentrations of small solutes, the transendothelial water flux was in the opposite direction and almost 800 times as large and was entirely transendothelial because no solute gradient forms across the pores. During albumin transients, gradients persisted for long times because albumin does not permeate small pores; the water fluxes per milliosmolar osmolarity change were 200 times larger than steady-state water flux. The analysis completely reconciles data from osmotic transient, tracer dilution, and lymph sampling techniques.  相似文献   

6.
Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of root cells less sensitive to K+. C9 decreased the rate of turgor reduction induced by sorbitol solution to the same extent as HgCl2. Thus, C9 is assumed to decrease the hydraulic conductivity (Lp) of the plasma membrane by blocking water channels, although possible inhibition of the plasmodesmata of the root symplast by C9 cannot be excluded. Onion roots transported water from the tip to the base in the absence of the osmotic gradient. This non-osmotic water flux (Jnos) was equivalent to Jos induced by 0.029 M sorbitol. Jnos increased when Jos was increased by repetition of osmosis and decreased when Jos was decreased by either HgCl2 or by C9. The correlation between Jnos and Jos suggests that non-osmotic water transport occurs via the same pathways as those for osmotic water transport.  相似文献   

7.
The parameters describing the permeability of the parietal pleura to liquid and total plasma proteins were measured in five anesthetized adult dogs. Small areas of parietal pleura (approximately 1 cm2) and the underlying endothoracic fascia were exposed through resection of the skin and the intercostal muscles. The portion of the thorax containing the pleural windows was removed from the chest and fixed over a bath of whole autologous plasma, the inner parietal pleural surface facing the bath. Small hemispheric Perspex capsules (surface area 0.28 cm2) connected to a pressure manometer were glued to the pleural windows; a subatmospheric pressure was set into the capsule chamber to create step hydraulic transpleural pressure gradients (delta P) ranging from 5 to 60 cmH2O. Transpleural liquid flows (Jv) and protein concentration of the capsular filtrate (Cfilt) and of the plasma bath were measured at each delta P. The transpleural protein flux (Js) at each delta P was calculated by multiplying Jv by the corresponding Cfilt. The hydraulic conductivity (Lp) of the parietal pleura was obtained from the slope of the Jv vs. delta P linear regression. The average Lp from 14 capsules was 9.06 +/- 4.06 (SD) microliters.h-1.cmH2O-1.cm-2. The mathematical treatment of the Js vs. Jv relationship allowed calculation of the unique Peclet number at the maximal diffusional protein flux and a corresponding osmotic permeability coefficient for plasma protein of 1 x 10(-5) +/- 0.97 x 10(-5) cm/s. The reflection coefficient calculated from the slope of the linear phase of the Js vs. Jv relationship was 0.11 +/- 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Water and solute transport along developing maize roots   总被引:15,自引:0,他引:15  
Hydraulic and osmotic properties were measured along developing maize (Zea mays L.) roots at distances between 15 and 465 mm from the root tip to quantify the effects of changes in root structure on the radial and longitudinal movement of water and solutes (ions). Root development generated regions of different hydraulic and osmotic properties. Close to the root tip, passive solute permeability (root permeability coefficient, Psr) was high and selectivity (root reflection coefficient, sr) low, indicative of an imperfect semipermeable root structure. Within the apical 100–150 mm, Psr decreased by an order of magnitude and sr increased significantly. Root hydraulic conductivity (Lpr) depended on the nature of the force (hydrostatic and osmotic). Osmotic Lpr was smaller by an order of magnitude than hydrostatic Lpr and decreased with increasing distance from the root tip. Throughout the root, responses in turgor of cortical cells and late metaxylem to step changes in xylem pressure applied to the base of excised roots were measured at high spatial resolution. The resulting profiles of radial and longitudinal propagation of pressure showed that the endodermis had become the major hydraulic barrier in older parts of the root, i.e. at distances from the apex ä 150 mm. Other than at the endodermis, no significant radial hydraulic resistance could be detected. The results permit a detailed analysis of the root's composite structure which is important for its function in collecting and translocating water and nutrients.Abbreviations and Symbols CPP cell pressure probe - IT root segments with intact tips; - Lpr root hydraulic conductivity - Lprh hydrostatic hydraulic conductivity of root - Lpro osmotic hydraulic conductivity of root - Papp hydrostatic pressure applied to cut end of root - Pc cell turgor - Pc, cor turgor of cortical cell - Pc,xyl turgor of late metaxylem vessel - Pro stationary root pressure - Pr0,seal stationary root pressure of sealed root segment - Psr solute permeability coefficient of root - RPP root pressure probe - TR root segments with tip removed - sr reflection coefficient of root Dedicated to Professor Andreas Sievers on the occasion of his retirement  相似文献   

9.
The effects of puncturing the endodermis of young maize roots (Zea mays L.) on their transport properties were measured using the root pressure probe. Small holes with a diameter of 18 to 60 [mu]m were created 70 to 90 mm from the tips of the roots by pushing fine glass tubes radially into them. Such wounds injured about 10-2 to 10-3% of the total surface area of the endodermis, which, in these hydroponically grown roots, had developed a Casparian band but no suberin lamellae. The small injury to the endodermis caused the original root pressure, which varied from 0.08 to 0.19 MPa, to decrease rapidly (half-time = 10-100 s) and substantially to a new steady-state value between 0.02 and 0.07 MPa. The radial hydraulic conductivity (Lpr) of control (uninjured) roots determined using hydrostatic pressure gradients as driving forces was larger by a factor of 10 than that determined using osmotic gradients (averages: Lpr [hydrostatic] = 2.7 x 10-7 m s-1 MPa-1; Lpr [osmotic] = 2.2 x 10-8 m s-1 MPa-1; osmotic solute: NaCl). Puncturing the endodermis did not result in measurable increases in hydraulic conductivities measured by either method. Thus, the endodermis was not rate-limiting root Lpr: apparently the hydraulic resistance of roots was more evenly distributed over the entire root tissue. However, puncturing the endodermis did substantially change the reflection ([sigma]sr) and permeability (Psr) coefficients of roots for NaCl, indicating that the endodermis represented a considerable barrier to the flow of nutrient ions. Values of [sigma]sr decreased from 0.64 to 0.41 (average) and Psr increased by a factor of 2.6, i.e. from 3.8 x 10-9 to 10.1 x 10.-9 m s-1(average). The roots recovered from puncturing after a time and regained root pressure. Measurable increases in root pressure became apparent as soon as 0.5 to 1 h after puncturing, and original or higher root pressures were attained 1.5 to 20 h after injury. However, after recovery roots often did not maintain a stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots.  相似文献   

10.
Diffusional fluxes of a large number of hydrophilic solutes and water across bullfrog (Rana catesbeiana) alveolar epithelium were measured in the Ussing-type flux chamber. Lungs were isolated from double-pithed animals and studied as flat sheets. Radioactive solutes and water were added to the upstream reservoir, and the rate of change of downstream reservoir radioactivity was monitored. A permeability coefficient was estimated for each substance from a linear relationship between radiotracer concentration in the downstream reservoir and time. These permeability data were used to analyze the equivalent water-filled pore characteristics of the alveolar epithelial barrier. The data reveal that the alveolar epithelium is best characterized by two distinct pore populations rather than by a single homogeneous pore population. The large-pore population consists of pores with a radius of about 5 nm and occupies 4% of the available pore area. The small-pore population consists of pores with a radius of about 0.5 nm and occupies 96% of the available pore area. The number of small pores to large pores is 2.68 X 10(3). After the alveolar surface was damaged by acid, a large-pore population with a radius of about 27 nm was seen, allowing nearly free diffusion of solutes. A major implication of the presence of two populations of pores in the alveolar epithelium is that hydrostatically driven bulk water flow occurs predominantly through the large pores, while osmotically driven bulk water flow takes place predominantly through the small pores. As a result, in general, hydrostatic and osmotic gradients may not be equally effective driving forces for water flow across this tissue.  相似文献   

11.
Radial and axial water transport in the sugar beet storage root   总被引:8,自引:0,他引:8  
To evaluate the contribution of transcellular, apoplastic and symplastic pathways to water movements, horizontal (axial pathway) and vertical (radial pathway) sugar beet root (Beta vulgaris L.) slices were studied. Volume flows (Jv) were measured under hydrostatic and/or osmotic gradients, using a computer-based data-acquisition system. When tissues were tested under hydrostatic gradients (0.3 MPa m-1) a much more important permeability was observed in the axial pathway, as compared with the radial one. Negative pressure gradients (tensions) were as effective as positive ones in inducing a net water movement. After the establishment of a concentration gradient in the radial pathway (obtained by adding 300 M m-3 mannitol to the employed solution) an osmotic flux, sensitive to HgCI2, was observed. The inhibitory effect of mercurial compounds was reversed by -mercaptoethanol while [14C] mannitol unidirectional fluxes were not affected by mercurial agents. In the axial pathway, the presence of a mannitol gradient did not develop a sustained osmotic flux. After an initial Jv in the expected direction, the Jv reversed and moved in the opposite way. It is concluded that, in the sugar beet root, water channels play a significant role in water transfers in the radial pathway. On the other side, water and solutes are transported by a hydrostatic gradient in the xylem vessels. In general, these results extend and adapt to a storage root the 'composite transport model' first proposed by Steudle et al.  相似文献   

12.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

13.
Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.  相似文献   

14.
Hydraulic conductivity of rice roots   总被引:18,自引:0,他引:18  
A pressure chamber and a root pressure probe technique have been used to measure hydraulic conductivities of rice roots (root Lp(r) per m(2) of root surface area). Young plants of two rice (Oryza sativa L.) varieties (an upland variety, cv. Azucena and a lowland variety, cv. IR64) were grown for 31-40 d in 12 h days with 500 micromol m(-2) s(-1) PAR and day/night temperatures of 27 degrees C and 22 degrees C. Root Lp(r) was measured under conditions of steady-state and transient water flow. Different growth conditions (hydroponic and aeroponic culture) did not cause visible differences in root anatomy in either variety. Values of root Lp(r) obtained from hydraulic (hydrostatic) and osmotic water flow were of the order of 10(-8) m s(-1) MPa(-1) and were similar when using the different techniques. In comparison with other herbaceous species, rice roots tended to have a higher hydraulic resistance of the roots per unit root surface area. The data suggest that the low overall hydraulic conductivity of rice roots is caused by the existence of apoplastic barriers in the outer root parts (exodermis and sclerenchymatous (fibre) tissue) and by a strongly developed endodermis rather than by the existence of aerenchyma. According to the composite transport model of the root, the ability to adapt to higher transpirational demands from the shoot should be limited for rice because there were minimal changes in root Lp(r) depending on whether hydrostatic or osmotic forces were acting. It is concluded that this may be one of the reasons why rice suffers from water shortage in the shoot even in flooded fields.  相似文献   

15.
Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.)   总被引:14,自引:4,他引:10       下载免费PDF全文
A root pressure probe was employed to measure hydraulic properties of primary roots of maize (Zea mays L.). The hydraulic conductivity (Lpr) of intact root segments was determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. In hydrostatic experiments, Lpr was constant along the segment except for an apical zone of approximately 20 millimeters in length which was hydraulically isolated due to a high axial resistance. In osmotic experiments, Lpr decreased toward the base of the roots. Lpr (osmotic) was significantly smaller than Lpr (hydrostatic). At various distances from the root tip, the axial hydraulic resistance per unit root length (Rx) was measured either by perfusing excised root segments or was estimated according to Poiseuille's law from cross-sections. The calculated Rx was smaller than the measured Rx by a factor of 2 to 5. Axial resistance varied with the distance from the apex due to the differentiation of early metaxylem vessels. Except for the apical 20 millimeters, radial water movement was limiting water uptake into the root. This is important for the evaluation of Lpr of roots from root pressure relaxations. Stationary water uptake into the roots was modeled using measured values of axial and radial hydraulic resistances in order to work out profiles of axial water flow and xylem water potentials.  相似文献   

16.
Fiscus EL 《Plant physiology》1975,55(5):917-922
This paper presents a general model for coupled solute and water flow through plant roots based on the thermodynamics of irreversible processes. The model explains in a straight-forward manner such experimentally observed phenomena as changes in root resistance, increased solute flux, and apparent negative resistance, which have been reported for root systems under the influence of a hydrostatic pressure gradient. These apparent anomalies are explained on the basis of the interaction between the osmotic and hydrostatic driving forces and the well known “sweeping away” or dilution effect. We show that with a constant hydraulic conductivity the only features necessary to explain these phenomena are some type of membrane or membranelike structure and a mechanism for actively accumulating solutes.  相似文献   

17.
Water transport in plants: Role of the apoplast   总被引:20,自引:1,他引:19  
The present state of modelling of water transport across plant tissue is reviewed. A mathematical model is presented which incorporates the cell-to-cell (protoplastic) and the parallel apoplastic path. It is shown that hydraulic and osmotic properties of the apoplast may contribute substantially to the overall hydraulic conductivity of tissues (Lpr) and reflection coefficients (67-1). The model shows how water and solutes interact with each other during their passage across tissues which are considered as a network of hydraulic resistors and capacitances (composite transport model). Emphasis is on the fact that hydraulic properties of tissues depend on the nature of the driving force. Osmotic gradients cause a much smaller tissue Lpr than hydrostatic. Depending on the conditions, this results in variable hydraulic resistances of tissues and plant organs. For the root, the model readily explains the well-known phenomenon of variable hydraulic resistance for the uptake of water and non-linear force/flow relations. Along the cell-to-cell (protoplastic) path, water flow may be regulated by the opening and closing of selective water channels (aquaporins) which have been shown to be affected by different environmental factors. H Lambers Section editor  相似文献   

18.
A procedure for the simultaneous measurement of hydraulic conductivityand xylem water potential of roots is presented. Roots remainintact and attached to the transpiring plant during measurement.The rate of water uptake by roots is measured at different waterpotential gradients along the root radial axis, obtained byplacing them in solutions with different osmotic potentials.Hydraulic conductivity and xylem water potential are calculatedby regression analysis of the relationship between water uptakerate and osmotic potential of the bathing solution, assumingthat xylem water potential and reflection coefficient remainconstant during measurement. Results for tomato plants experiencingdrought are presented and discussed. Key words: Root, hydraulic conductivity, water potential  相似文献   

19.
Wan X  Zwiazek JJ 《Plant physiology》1999,121(3):939-946
HgCl(2) (0.1 mM) reduced pressure-induced water flux and root hydraulic conductivity in the roots of 1-year-old aspen (Populus tremuloides Michx.) seedlings by about 50%. The inhibition was reversed with 50 mM mercaptoethanol. Mercurial treatment reduced the activation energy of water transport in the roots from 10.82 +/- 0.700 kcal mol(-1) to 6.67 +/- 0.193 kcal mol(-1) when measured over the 4 degrees C to 25 degrees C temperature range. An increase in rhodamine B concentration in the xylem sap of mercury-treated roots suggested a decrease in the symplastic transport of water. However, the apoplastic pathway in both control and mercury-treated roots constituted only a small fraction of the total root water transport. Electrical conductivity and osmotic potentials of the expressed xylem sap suggested that 0.1 mM HgCl(2) and temperature changes over the 4 degrees C to 25 degrees C range did not induce cell membrane leakage. The 0.1 mM HgCl(2) solution applied as a root drench severely reduced stomatal conductance in intact plants, and this reduction was partly reversed by 50 mM mercaptoethanol. In excised shoots, 0.1 mM HgCl(2) did not affect stomatal conductance, suggesting that the signal that triggered stomatal closure originated in the roots. We suggest that mercury-sensitive processes in aspen roots play a significant role in regulating plant water balance by their effects on root hydraulic conductivity.  相似文献   

20.
Summary The hydraulic conductivity of rabbit gallbladder epithelium has been studied using a continuous volumetric method based on capacitance measurements. The time resolution for measuring osmotic flows is in the range of seconds. Volume flows have been induced by osmotic gradients between 0 and 100 mosmol. In this range the flow-force relation is linear and theP f value is 9.3×10–3 cm/sec. After correction for solute polarization effects, theP f value amounts to 0.05 cm/sec. The observed flow is constant between 5 sec up to 20 min after a sudden increase in the osmolarity of the mucosal solution. The wet weight of the gallbladder tissue decreases by 22% and increases by 30% during osmotic flows from serosa to mucosa and from mucosa to serosa, respectively. Volume flows induced by hydrostatic pressure gradients on the mucosal surface are linearly related to the driving forces between 0 and 40 mbar. TheP f value is 0.15 cm/sec. The volume flows are constant between 2 sec and 15 min after pressure application. The flow-force relation for pressure gradients on the serosal surface is markedly nonlinear for gradients greater than 5 mbar. Below 5 mbar theP f value is 4.5 cm/sec. From electrical measurements, e.g., resistance and streaming potentials, and from flux studies with inulin and polyethylene glycol 4000, it is concluded that hydrostatic and osmotic gradients are not comparable when they are applied to gallbladder epithelium. They induce volume flows across different pathways, e.g., osmosis predominantly across the cellular route and pressure filtration predominantly across paracellular routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号