共查询到20条相似文献,搜索用时 0 毫秒
1.
Olivier Hilfiker Raphaël Groux Friederike Bruessow Karin Kiefer Jürgen Zeier Philippe Reymond 《The Plant journal : for cell and molecular biology》2014,80(6):1085-1094
Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen‐associated molecular patterns (PAMPs), which are involved in PAMP‐triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg‐induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae‐infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg‐induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae. 相似文献
2.
Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana 总被引:1,自引:2,他引:1
The function of fungal volatiles in fungal-plant interactions is poorly understood. The aim here was to address this lack of knowledge, focusing on truffles, ectomycorrhizal fungi that are highly appreciated for their aroma. The effect of volatiles released by truffles was tested on Arabidopsis thaliana in a closed chamber bioassay. The volatiles produced by Tuber melanosporum, Tuber indicum and Tuber borchii fruiting bodies inhibited A. thaliana in terms of root length and cotyledon leaf size, and in some cases induced a bleaching of the seedlings, thus indicating toxicity. Ten synthetic volatiles were tested in a similar way. The strongest inhibitory effect was observed with C(8) molecules such as 1-octen-3-ol, an alcohol with a typical 'fungal smell'. Two of these C(8) compounds were further tested to investigate their mechanism of action. 1-Octen-3-ol and trans-2-octenal induced an oxidative burst (hydrogen peroxide, H(2)O(2)) in the A. thaliana leaves as well as a strong increase in the activities of three reactive oxygen species (ROS)-scavenging enzymes. These results demonstrate that fungal volatiles inhibit the development of A. thaliana and modify its oxidative metabolism. Even though limited to laboratory observations, these results indicate the presence of a hitherto unknown function of fungal volatiles as molecules that mediate fungal-plant interactions. 相似文献
3.
Robin K. Cameron Richard A. Dixon Christopher J. Lamb 《The Plant journal : for cell and molecular biology》1994,5(5):715-725
Local infection with a necrotizing pathogen can render plants resistant to subsequent infection by normally virulent pathogens. A system for biological induction of such systemic acquired resistance (SAR) in Arabidopsis thaliana is reported. When plants were immunized by local inoculation of a single leaf with avirulent Pseudomonas syringae pv. tomato (Pst) carrying the avrRpt2 avirulence gene, after 2 days other leaves became resistant, as measured symptomatically and by in planta bacterial growth, to challenge with a virulent Pst strain lacking this avirulence gene. Resistance was systemic and protected the plants against infection by other virulent pathogens including P. syringae pv. maculicola. Low-dose inoculation induced a strong SAR and double immunizations did not increase the level of protection indicating that the response of only a few cells to the immunizing bacteria is required. SAR was not induced by the virulent strain of Pst lacking avrRpt2. However, experiments with the Arabidopsis RPS2 disease resistance gene mutant rps2-201, which does not exhibit a local hypersensitive response to Pst carrying the corresponding avirulence gene avrRpt2, indicate that a hypersensitive response contributes to, but is not essential for, the induction of SAR. Thus, avrRpt2 activates either a branching signal pathway or separate parallel pathways for induction of localized hypersensitive resistance and SAR, with downstream potentiation of the systemic response by the local response. Using this system for the biological induction of SAR in Arabidopsis, it should be possible to dissect the molecular genetics of SAR by the isolation of mutants affected in the production, transmission, perception and transduction of the systemic signal(s). 相似文献
4.
Although it is well known that the pyridine nucleotides NAD and NADP function inside the cell to regulate intracellular signaling processes, recent evidence from animal studies suggests that NAD(P) also functions in the extracellular compartment (ECC). Extracellular NAD(P) [eNAD(P)] can either directly bind to plasma membrane receptors or be metabolized by ecto-enzymes to produce cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, and/or may ADP-ribosylate cell-surface receptors, resulting in activation of transmembrane signaling. In this study, we report that, in plants, exogenous NAD(P) induces the expression of pathogenesis-related ( PR ) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Chelation of Ca2+ by EGTA significantly inhibits the induction of PR genes by exogenous NAD(P), suggesting that exogenous NAD(P) may induce PR genes through a pathway that involves Ca2+ signaling. We show that exogenous application of NAD(P) causes accumulation of the defense signal molecule salicylic acid (SA), and induces both SA/NPR1-dependent and -independent PR gene expression and disease resistance. Furthermore, we demonstrate that NAD(P) leaks into the plant ECC after mechanical wounding and pathogen infection, and that the amount of NAD(P) leaking into the ECC after P. syringae pv. tobacco DC3000/ avrRpt2 infection is sufficient for induction of both PR gene expression and disease resistance. We propose that NAD(P) leakage from cells losing membrane integrity upon environmental stress may function as an elicitor to activate plant defense responses. Our data provide evidence that eNAD(P) functions in plant signaling, and illustrate the potential importance of eNAD(P) in plant innate immunity. 相似文献
5.
Petersen M Brodersen P Naested H Andreasson E Lindhart U Johansen B Nielsen HB Lacy M Austin MJ Parker JE Sharma SB Klessig DF Martienssen R Mattsson O Jensen AB Mundy J 《Cell》2000,103(7):1111-1120
Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression. 相似文献
6.
Bacterial volatiles and their action potential 总被引:1,自引:0,他引:1
Marco Kai Maria Haustein Francia Molina Anja Petri Birte Scholz Birgit Piechulla 《Applied microbiology and biotechnology》2009,81(6):1001-1012
During the past few years, an increasing awareness concerning the emission of an unexpected high number of bacterial volatiles
has been registered. Humans sense, intensively and continuously, microbial volatiles that are released during food transformation
and fermentation, e.g., the aroma of wine and cheese. Recent investigations have clearly demonstrated that bacteria also employ
their volatiles during interactions with other organisms in order to influence populations and communities. This review summarizes
the presently known bioactive compounds and lists the wide panoply of effects possessed by organisms such as fungi, plants,
animals, and bacteria. Because bacteria often emit highly complex volatile mixtures, the determination of biologically relevant
volatiles remains in its infancy. Part of the future goal is to unravel the structure of these volatiles and their biosynthesis.
Nevertheless, bacterial volatiles represent a source for new natural compounds that are interesting for man, since they can
be used, for example, to improve human health or to increase the productivity of agricultural products. 相似文献
7.
8.
Sun Jae Kwon Hak Chul Jin Soohyun Lee Myung Hee Nam Joo Hee Chung Soon Il Kwon Choong-Min Ryu Ohkmae K. Park 《The Plant journal : for cell and molecular biology》2009,58(2):235-245
Systemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola , Erwinia carotovora and Pseudomonas syringae , and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2 -inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s). 相似文献
9.
Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway 总被引:12,自引:6,他引:12
Kay A. Lawton Leslie Friedrich Michelle Hunt Kris Weymann Terrance Delaney Helmut Kessmann Theodor Staub John Ryals 《The Plant journal : for cell and molecular biology》1996,10(1):71-82
Benzothiadiazole (BTH) is a novel chemical activator of disease resistance in tobacco, wheat and other important agricultural plants. In this report, it is shown that BTH works by activating SAR in Arabidopsis thaliana. BTH-treated plants were resistant to infection by turnip crinkle virus, Pseudomonas syringae pv ‘tomato’ DC3000 and Peronospora parasitica. Chemical treatment induced accumulation of mRNAs from the SAR-associated genes, PR-1, PR-2 and PR-5. BTH treatment induced both PR-1 mRNA accumulation and resistance against P. parasitica in the ethylene response mutants, etr1 and ein2, and in the methyl jasmonate-insensitive mutant, jar1, suggesting that BTH action is independent of these plant hormones. BTH treatment also induced both PR-1 mRNA accumulation and P. parasitica resistance in transgenic Arabidopsis plants expressing the nahG gene, suggesting that BTH action does not require salicylic acid accumulation. However, because BTH-treatment failed to induce either PR-1 mRNA accumulation or P. parasitica resistance in the non-inducible immunity mutant, nim1, it appears that BTH activates the SAR signal transduction pathway. 相似文献
10.
Rhizobacterial volatiles and photosynthesis‐related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron‐deficiency responses 下载免费PDF全文
Christos Zamioudis Jolanda Korteland Johan A. Van Pelt Muriël van Hamersveld Nina Dombrowski Yang Bai Johannes Hanson Marcel C. Van Verk Hong‐Qing Ling Paul Schulze‐Lefert Corné M.J. Pieterse 《The Plant journal : for cell and molecular biology》2015,84(2):309-322
11.
Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains 总被引:1,自引:0,他引:1
Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed. 相似文献
12.
Thirty-six phytohormone-affected mutants of Arabidopsis thaliana (L.) Heynh. and their parental ecotypes were tested for resistance/susceptibility to Botrytis cinerea Pers.; Fr. and ability to develop Trichoderma-mediated induced systemic resistance (ISR). Ecotype Colombia-0 (Col-0) was relatively resistant to B. cinerea, and Trichoderma harzianum Rifai T39 application at sites spatially separated (roots) from the B. cinerea inoculation (leaves) resulted in reduction of grey mold symptoms. Ecotypes Wassilewskija-4, Nossen-0 and Landsberg-0 had
low levels of basal resistance to B. cinerea and were unable to express ISR. Mutants derived from ISR-non-inducible ecotypes displayed ISR-non-inducible phenotypes, whereas
the ISR inducibility of mutants derived from the ISR-inducible genotype Col-0 varied according to the type of mutant. Thus,
salicylic acid (SA)-impaired mutants derived from Col-0 were ISR-inducible, while ethylene/jasmonic acid (ethylene/JA)-impaired
mutants of the same origin were ISR-non-inducible. SA-impaired mutants retained basal level of resistance to B. cinerea, while most ethylene/JA-impaired mutants were highly susceptible. Abscisic acid- and gibberellin-impaired mutants were highly
susceptible to B. cinerea and showed ISR-non-inducible phenotypes irrespective of their lines of origin. Auxin-resistant mutants derived from Col-0
were ISR-inducible; mutant originating from Landsberg-0 and mutants which were resistant to both auxin and ethylene were ISR-non-inducible.
Most of the arabidopsis genotypes which were unable to express Trichoderma-mediated ISR against B. cinerea exhibited enhanced susceptibility to this pathogen. T. harzianum treatments enhanced the growth of arabidopsis plants regardless of genotype or ISR inducibility. 相似文献
13.
Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action 总被引:8,自引:0,他引:8
Yoshioka K Nakashita H Klessig DF Yamaguchi I 《The Plant journal : for cell and molecular biology》2001,25(2):149-157
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA. 相似文献
14.
Fitness benefits of systemic acquired resistance during Hyaloperonospora parasitica infection in Arabidopsis thaliana 下载免费PDF全文
We investigated the fitness benefits of systemic acquired resistance (SAR) in Arabidopsis thaliana using a mutational and transformational genetic approach. Genetic lines were designed to differ in the genes determining resistance signaling in a common genetic background. Two mutant lines (cpr1 and cpr5) constitutively activate SAR at different points in SAR signaling, and one mutant line (npr1) has impaired SAR. The transgenic line (NPR1-H) has enhanced resistance when SAR is activated, but SAR is still inducible similarly to wild type. The fitness benefits were also investigated under two nutrient levels to test theories that preventing pathogen damage and realized resistance benefits may be affected by nutrient availability. Under low-nutrient conditions and treatment with the pathogenic oomycete, Hyaloperonospora parasitica, wild type had a higher fitness than the mutant that could not activate SAR, demonstrating that normal inducible SAR is beneficial in these conditions; this result, however, was not found under high-nutrient conditions. The mutants with constitutive SAR all failed to show a fitness benefit in comparison to wild type under a H. parasitica pathogen treatment, suggesting that SAR is induced to prevent an excessive fitness cost. 相似文献
15.
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context. 相似文献
16.
17.
Antagonism between entomopathogenic nematodes (EPNs) and plant-parasitic nematodes (PPNs) has been documented over the past two decades but its mechanism and ecological significance remain elusive. We investigated the effects of Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila applied to the potting medium on pyrogallol peroxidase (P-peroxidase), guaiacol peroxidase (G-peroxidase) and catalase activities in Hosta sp. and Arabidopsis thaliana leaves as components of induced systemic resistance. We found that P-peroxidase activity was significantly higher in the leaves from hosta plants treated with S. carpocapsae infective juveniles (IJs) and S. carpocapsae infected insect cadavers than in the leaves from the control plants 2 weeks after treatment. The G-peroxidase activity was significantly higher in S. carpocapsae infected cadaver and X. nematophila treatments 10 and 15 days after treatment (DAT) and in S. carpocapsae IJs treatment 5 and 15 DAT. The catalase activity in hosta leaves was significantly higher in S. carpocapsae infected cadaver and X. nematophilus treatments compared with the control 5 and 15 DAT and in S. carpocapsae IJs treatment 5 and 10 DAT. Further, the catalase activity in A. thaliana leaves was significantly higher in S. carpocapsae IJs treatment than in the control 7 DAT. We also determined the effects of S. carpocapsae infected cadavers and S. carpocapsae IJs on PR1-gene expression in transgenic A. thaliana leaves through GUS (β-glucuronidase) activity assay and found that the PR1-gene was expressed in leaves from all treatments except the control. Thus, we conclude that the EPNs and their symbiotic bacteria can induce systemic resistance in plants which may explain the elusive antagonistic effect of EPNs on PPNs. 相似文献
18.
Luo Y Zhang DD Dong XW Zhao PB Chen LL Song XY Wang XJ Chen XL Shi M Zhang YZ 《FEMS microbiology letters》2010,313(2):120-126
Trichoderma spp. are well-known biocontrol agents because of their antimicrobial activity against bacterial and fungal phytopathogens. However, the biochemical mechanism of their antiviral activity remains largely unknown. In this study, we found that Trichokonins, antimicrobial peptaibols isolated from Trichoderma pseudokoningii SMF2, could induce defense responses and systemic resistance in tobacco (Nicotiana tabacum var. Samsun NN) against tobacco mosaic virus (TMV) infection. Local Trichokonin (100 nM) treatment led to 54% lesion inhibition, 57% reduction in average lesion diameter and 30% reduction in average lesion area in systemic tissue of tobacco compared with control, indicating that Trichokonins induced resistance in tobacco against TMV infection. Trichokonin treatment increased the production of reactive oxygen species and phenolic compounds in tobacco. Additionally, application of Trichokonins significantly increased activities of pathogenesis-related enzymes PAL and POD, and upregulated the expression of several plant defense genes. These results suggested that multiple defense pathways in tobacco were involved in Trichokonin-mediated TMV resistance. We report on the antivirus mechanism of peptaibols, which sheds light on the potential of peptaibols in plant viral disease control. 相似文献
19.
20.
Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsis hrl1 mutant 总被引:1,自引:0,他引:1
The hypersensitive response (HR) displayed by resistant plants against invading pathogens is a prominent feature of plant-pathogen interactions. The Arabidopsis hypersensitive response like lesions1 (hrl1) mutant is characterized by heightened defense responses that make it more resistant to virulent pathogens. However, hrl1 suppresses avirulent pathogen-induced HR cell death. Furthermore, the high PR-1 expression observed in hrl1 remains unaltered after avirulent and virulent pathogen infections. The suppressed HR phenotype in hrl1 is observed even when an elicitor is expressed endogenously from an inducible promoter, suggesting that an impaired transfer of avirulent factors is not the reason. Interestingly, the lack of HR phenotype in hrl1 is reversed if the constitutive defense responses are compromised either by a mutation in NON EXPRESSOR OF PR-1 (NPR1) or by depleting salicylic acid due to the expression of the nahG gene. The rescue of HR cell death in hrl1 npr1 and in hrl1 nahG depends on the extent to which the constitutive systemic acquired response (SAR) is compromised. Pretreating Arabidopsis wild-type plants with SAR-inducers, before pathogen infection resulted in a significant decrease in HR cell death. Together, these results demonstrate that the preexisting SAR may serve as one form of negative feedback loop to regulate HR-associated cell death in hrl1 mutant and in the wild-type plants. 相似文献