首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat basophil leukemia cell homogenates effectively catalyze the conversion of leukotriene A4 to a mixture of leukotrienes C4 and D4 in the presence of glutathione. These homogenates also catalyze the formation of adducts of halogenated nitrobenzene with glutathione, as determined spectrophotometrically. While all the classical glutathione S-transferase activity resides in the soluble fraction of the homogenates, the thiol ether leukotriene-generating activity is found in the particulate fraction. This “leukotriene C synthetase” activity has been solubilized from a crude high-speed particulate fraction by means of the nonionic detergent, Triton X-100. The solubilized enzyme is incapable of converting 2,4-dinitrochlorobenzene to a colored product in the presence of glutathione. Nor will it react with 3,4-dichloronitrobenzene. On the other hand, under optimal conditions, this enzyme preparation is capable of generating about 0.1 nmol leukotriene C mg protein?1 min?1 in a reaction which continues in linear fashion for at least 10 min. This dissociation in substrate specificity, as well as differences in the inhibition profile, distinguish the enzyme activity in the particulate fraction from rat basophil leukemia cell homogenates from the microsomal glutathione S-transferase which has been described in rat liver homogenates, suggesting that this “leukotriene C synthetase” is a new and unique enzyme.  相似文献   

2.
Some properties of a ficin-papain inhibitor from avian egg white   总被引:3,自引:0,他引:3  
A procedure has been established for the isolation, from sheep liver, of 6-phosphogluconate dehydrogenase which is homogeneous according to the criteria of the analytical ultracentrifuge, and isoelectric focusing. A systematic determination of the effects of pH, ionic strength, metal ions, and temperature, on the kinetic parameters of the isolated 6-phosphogluconate dehydrogenase has been carried out. Double-reciprocal plots of enzyme rate measurements as a function of substrate concentration indicate Km values of 15 μm for 6-phosphogluconate, and 7 μm for NADP+, under optimum assay conditions, and show no effect of the concentration of one substrate on the Km of the other substrate under the assay conditions employed. Ionic strength, monovalent and divalent metals, are apparently interchangeable in their ability to activate the enzyme, and act by decreasing the Km values of the enzyme, not by increasing the reaction rate. Concentrations of metals above the optimum are strongly inhibitory. Plots of ?log Km vs pH show inflection points at 8.3 for 6-phosphogluconate, and 6.5 for NADP+. At low substrate concentrations the pH optimum of the enzyme is at pH 7.7, but plots of V vs pH increase up to pH 9.1 (the enzyme is unstable at higher pH values). An Arrhenius plot shows a straight line between temperatures of 8.6 and 39.4 °C, and an energy of activation of 15,450 cal mole?1.  相似文献   

3.
Dismutation of O2? by bovine copper-zinc superoxide di smutase has been studied at different O2? concentrations with a polarographic method. Saturation of the enzyme by the substrate was observed and Km and Vmax values were calculated. Inhibition by OH? and CN? was shown to be of the competitive type. The data support on inner sphere mechanism for the reaction between O2? and copper.  相似文献   

4.
A study was conducted to find out the role of ascorbic acid (AsA) in modulating growth and different physio-biochemical attributes of canola plants under well-watered as well as water-deficit conditions. Drought stress imposed on 60 % field capacity significantly decreased the shoot and root fresh and dry weights, leaf chlorophyll contents, shoot and root P, root K+, and activity of CAT enzyme, while increased chlorophyll a/b contents, MDA, NPQ, leaf total phenolics, free proline and GB contents in both canola cultivars. Foliar-applied varying levels (50, 100 and 150 mg L?1) of AsA enhanced shoot and root fresh and root dry weights, qN, NPQ, shoot and root P, AsA as well as the activity of POD enzyme particularly under drought stress conditions. Of both canola cultivars, cv. Dunkeld was higher in shoot fresh weights, ETR and F v /F m, MDA, proline and GB contents, and POD activity, however, cv. Cyclone in total phenolics and qN under well-watered and water-deficit conditions. Overall, the foliar-applied AsA had a positive effect, though not marked, on salt sensitive cv. Cyclone in terms of improved growth and other attributes, whereas exogenously applied AsA had a non-significant effect on relatively salt tolerant cv. Dunkeld.  相似文献   

5.
Ca-polygalacturonate is a demethoxylated component of pectins which are constitutive of plant root mucigel. In order to define the role of root mucigel in myrosinase immobilization and activity at root level, a myrosinase enzyme which had been isolated from Sinapis alba seeds was immobilized into Ca-polygalacturonate. The activity profile for the immobilized and free enzyme was evaluated using the pH-Stat method as a function of time, temperature, and pH. The Michaelis-Menten kinetic parameters change between the immobilized (V max ?=?127?±?13 U mg?1 protein; K M ?=?6.28?±?0.09?mM) and free (V max ?=?17?±?1 U mg?1 protein; K M ?=?0.96?±?0.01?mM) forms of myrosinase, probably due to conformational changes involving the active site as a consequence of enzyme immobilization. Immobilized enzyme activity evaluated as a function of different substrates gave the highest value with nasturtin, the glucosinolate that is typical of several brassicaceae plant roots containing the glucosinolate-myrosinase defensive system. No feedback regulation mechanism was found in the presence of an excess of enzymatic reaction products (i.e. allyl isothiocyanate or sulphate). The high enzyme immobilization yield into Ca-polygalacturonate and its activity preservation under different conditions suggest that the enzyme released by plants at root level could be entrapped in root mucigel in order to preserve its activity.  相似文献   

6.
The addition of nitro blue tetrazolium (NBT) into the reaction of adrenaline autooxidation allows direct identification of superoxide anion formation (O2−⊙) as well as demonstration of kinetics of their accumulation in this superoxide-generating system. The kinetics of adrenochrome and O2−⊙ formation has been compared under the same conditions. Three possible approaches to the use of the adrenaline autooxidation reaction for the determination of superoxide dismutase activity (SOD) and revealing antioxidant properties of various compounds are discussed. Two of these approaches have been described previously: the spectro-photometric method of registration of adrenochrome, an end product of adrenaline autooxidation, at 347 nm (Sirota, 1999) and the polarographic method, which measures oxygen consumption used for O2−⊙ formation (Sirota, 2011). Here, a novel approach to this problem is presented; it is based on spectrophotometric determination of O2−⊙ using NBT. The employment of this approach results in a significant decrease of the pH value of carbonate buffer from 10.5 to 9.7 and a 4-fold decrease in the amounts of added adrenaline, thus creating milder conditions for the revealing and investigation of antioxidant properties of materials being examined.  相似文献   

7.
The cellular slime mold, Dictyostelium discoideum, contains at least two classes of phosphodiesterase activity. One class of enzymes hydrolyses cyclic AMP (cAMP) and cyclic GMP (cGMP) with approximately equal rates. Another enzyme, which is less than 5% of the total activity, specifically hydrolyses cGMP. The cGMP-specific enzyme does not bind to a Con A-Sepharose column, while all the cAMP-hydrolyzing activities are retarded by this column. The cGMP-specific enzyme is activated by low cGMP concentrations (10?8-10?6 M); the enzyme has normal Michaelis-Menten kinetics at high substrate concentrations with a Km of about 3–6 μM. The cGMP-binding sites for activation and for catalysis show different cyclic nucleotide specificity, but they are probably located on one protein with a molecular weight of about 70 000. The enzyme is stable only under specific conditions, and the activation property of the enzyme is lost relatively easy. Irreversible modifications occur at temperatures below 0° and above 30°C, and at pH below 6.0. Several other conditions such as high ion concentrations, temperatures just above 0°C and pH above 8.0 lead to reversibel modifications of enzyme activity.  相似文献   

8.
A continuous, coupled polarographic assay, which couples trehalose hydrolysis to O2 consumption using glucose oxidase (EC 1.1.3.4) and catalase (EC 1.11.1.6) as ancillary enzymes has been developed for the measurement of trehalase (α-α′-trehalose 1-d-glucohydrolase, EC 3.2.1.28) activity. With this procedure, O2 consumption was a linear function of time and the coupled reaction rate was directly proportional to the amount of protein assayed with both crude and partially purified enzyme preparations. The limits of sensitivity with this assay correspond to the production of 2.5 nmol of glucose/min. The validity of this assay was confirmed by comparative studies with a discontinuous colorimetric assay for the quantitation of glucose. In addition, the applicability of this assay was appraised by determining the Km of the enzyme for trehalose. The value obtained with the polarographic assay (i.e., 1.3 ± 0.1 mm trehalose) showed excellent agreement with that obtained using a discontinuous colorimetric method (i.e., 1.2 mm trehalose). Thus the equivalence and applicability studies with the polarographic assay demonstrated that this procedure is a valid and sensitive method for the rapid quantitation of trehalase activity.  相似文献   

9.
Insect guts represent unique natural biocatalyst systems for biocatalyst discovery and biomass deconstruction mechanism studies. In order to guide the further research for enzyme discovery and biodiversity analysis, we carried out comprehensive xylanase and cellulase activity assays for the gut contents of three insect species representing different orders and food sources. The three insect species are grasshopper (Acrididae sp.), woodborer (Cerambycidae spp.), and silkworm (Bombyx mori) to represent the wood-consuming, grass-consuming, and leaf-consuming insects from Orthoptera, Coleoptera, and Lepidoptera orders, respectively. Generally speaking, the enzyme activity assays have shown that the cellulase and xylanase activities for grasshopper and woodborer guts are significantly higher than those of silkworm under various conditions. In addition, both pH and temperature have a significant impact on the enzyme activities in the gut contents. For the grasshopper gut, the means of xylanase and cellulase activities at pH 7 were 3,397 and 404 μM mg?1 min?1, which are significantly higher than the activities at pH 4 and 10 (P?<?0.05). However, woodborer guts have shown the highest cellulase activity at pH 10. The results suggested that systems similar to woodborer guts could be good resources for discovering alkaline-tolerant enzymes. Moreover, the enzyme activities in response to different substrate concentrations were also analyzed, which indicated that grasshopper gut had particularly high cellulase activity. The enzyme activities in response to the reaction time were also examined, and we found that the enzyme activities (micromolar per milligram per minute) of different insect gut juices in response to the increase of incubation time fit well to the power function equation (E c = K ? t b ) with high coefficients (r 2?>?0.99). The newly developed model serves well to compare the characteristics of the enzyme mixtures among different insect species, which can be applied to other studies of natural biocatalyst systems for the future. Overall, the data indicated that grasshopper and woodborer guts are valuable resources for discovering the novel biocatalysts for various biorefinery applications.  相似文献   

10.
Cross‐linked enzyme aggregates (CLEAs) were prepared from several precipitant agents using glutaraldehyde as a cross‐linking agent with and without BSA, finally choosing a 40% saturation of ammonium sulfate and 25 mM of glutaraldehyde. The CLEAs obtained under optimum conditions were biochemically characterized. The immobilized enzyme showed higher thermal activity and a broader range of pH and organic solvent tolerance than the free enzyme. Arylesterase from Gluconobacter oxydans showed activity toward cephalosporin C and 7‐aminocephalosporanic acid. The CLEAs had a Kcat/KM of 0.9 M?1/S?1 for 7‐ACA (7‐aminocephalosporanic acid) and 0.1 M?1/S?1 for CPC (cephalosporin c), whereas free enzyme did not show a typical Michaelis–Menten kinetics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:36–42, 2016  相似文献   

11.
Polarographic measurements showed that N3? and halides in hibit the activity of bovine Cu, Zn superoxide dismutase in a competitive fashion, as previously demonstrated for CN? and OH?. All anions increase the spin-lattice nuclear magnetic relaxation time (T1) of aqueous solutions of the enzyme as well, but the stability constants measured from T1 data are lower than those calculated from activity data. The results suggest that substrate and anionic inhibitors bind during the catalytic action at the water coordination position of the enzyme copper, and that these inhibitors may have a greater affinity for the cuprous form of the enzyme which is generated in the catalytic cycle.  相似文献   

12.
The direct and indirect methods for assaying the superoxide dismutase activity of a compound are compared. With the use of a direct method. the mechanism of the catalysis of O2-dismutation by the tested compound can be determined. while with the indirect method it cannot. and this may lead to misinterpretation of the results. Assuming that the catalysis occurs via the ‘ping-pong’ mechanism, both the direct and indirect methods are limited to the determination of values of kcat ≥ 105M?1s?1 and kcat ≥ 3 × 106M?1s?1. respectively. Moreover, many side reactions may occur with the indirect method which may interfere with the measurements. Nevertheless. the indirect method approximates better the in vivo conditions than the direct method, and a tested compound that has high SOD activity using a direct method and low SOD activity using an indirect method. will most probably be a poor SOD mimic in vivo.  相似文献   

13.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

14.
The production of an extracellular chitin deacetylase (CDA) produced by Aspergillus flavus under solid-substrate fermentation (SSF) using wheat bran as substrate was optimized using statistical methods. The CDA production in SSF increased 1.79-fold in comparison to the unoptimized basal level medium. It was purified to a final purity of 3.94-fold by ammonium sulphate precipitation, ion-exchange chromatography, and gel-permeation chromatography (GPC) consecutively and further characterized. The molecular mass of the enzyme was estimated to be about 28?kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and GPC analysis. The optimum pH and temperature of the purified enzyme were pH 8.0 and 50?°C, respectively. Additionally, the effect of some cations and other chemical compounds on the CDA activity was studied. A marginal increase in enzyme activity was observed with metal ions mainly Mn2+ and Zn2+. No inhibition of the enzyme was observed by the end product, that is, acetate up to 70?mM concentration. The Km and kcat values of the enzyme were determined to be 9.45?mg mL?1 and 26.72?s?1 respectively, using colloidal chitin as substrate. Among various substrates tested, glycol chitin and colloidal chitin were deacetylated.  相似文献   

15.
A method is described for the determination of 5′-terminal methylated (cap) structures in unlabeled mRNA based on oxidation with NaIO4, reduction with NaB[3H]4, cleavage with P1 nuclease, and separation on a strong anion-exchange resin by high-performance liquid chromatography (hplc). Model compounds (cap 1 dinucleotides) were used to show that no structural alteration other than cleavage of the ribose ring of 7-methylguanosine occurred under the conditions used for oxidation and reduction. It was shown that the enzyme tobacco acid pyrophosphatase could be used to cleave cap dinucleotides containing unmodified or ring-opened ribose moieties and could also be used to release [3H]pm7G′ from NaB[3H]4-labeled rabbit globin mRNA. All five known cap 1 dinucleotides were resolved by hplc. The cap of rabbit globin mRNA was identified as m7Gpppm6Am, in agreement with other methods of determination.  相似文献   

16.
The appearance of NO2 ? reducing activity of cytochrome c (Cyt c) upon heat denaturation was investigated with equine heart Cyt c. Denatured equine heart Cyt c (dCyt c), which was treated at 100°C for 30 min, had NO2 ? reducing activity in the presence of dithionite and methylviologen in an aqueous solution under anaerobic conditions. In contrast, hemoglobin and myoglobin had no such activity under the same conditions. Using spectroscopic methods, we found that the appearance of this activity in the Cyt c was due to the following intramolecular changes: unfolding of the peptide chain, exposure of the heme, dissociation of the sixth ligand methionine sulfur, and appearance of autoxidizability. The dCyt c catalyzed NO2 ? reduction to NH4 + via ferrous-NO complexes, and this reaction was a 6-electron and 8-proton reduction. Sepharose-immobilized dCyt c had activity similar strength to that in solution. The resin retained the activity after five uses and even after storage for 1 year. On the basis of these results, we concluded that Cyt c acquired a new catalytic activity upon heat treatment, unlike to other familiar biological molecules.  相似文献   

17.
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat?=?9.35?×?105?s?1 and kcat/Km?=?1.1?×?108?M?1?s?1) which was maintained after heating the enzyme at 80?°C for 3?h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.  相似文献   

18.
Raimund Noske  Flemming Cornelius 《BBA》2010,1797(8):1540-1545
Isothermal titration microcalorimetry (ITC) is shown here to be a sensitive and accurate method for assaying the steady-state enzyme activity of the Na+,K+-ATPase. Single ATP injection experiments yield an apparent enthalpy change for the ATP hydrolysis reaction catalyzed by the enzyme of −51 (± 1) kJ mol1. This value is independent of the amount of ADP accumulated in the sample cell, which indicates that under the experimental conditions studied here (saturating Na+ and K+ concentrations) ADP does not inhibit enzyme activity by reversal of the phosphorylation reaction and resynthesizing ATP. Multiple ATP injection titration experiments in which varying concentrations of ADP were initially included in the sample cell could be adequately explained by a Michaelis-Menten kinetic model incorporating noncompetitive inhibition. This suggests that ADP inhibits the enzyme by binding to more than one enzyme intermediate and inhibiting forward reactions of the enzyme. Values of Km and KI obtained for the fits agree with literature values obtained by other methods. Because ITC is a direct method of continually monitoring enzyme activity, it is a valuable supplement to less direct or noncontinuous methods such as colorimetric, enzyme-coupled or radioactivity-based assays.  相似文献   

19.
The kinetic properties and subcellular distribution of an esterifying enzyme in the pigment epithelium of bovine retina have been studied using both [1-3H]retinol and [3H]retinol bound to cellular retinol-binding protein as substrates. The most active esterifying fraction in pigment epithelial cell preparations was the microsomes, but the lysosome plus mitochondria fraction also showed some activity, probably due to endoplasmic reticulum present as an impurity. The microsomal enzyme showed optimum activity at pH 7.5, and the reaction was linear up to 30 μg protein and for the first 10–15 min. The apparent Km values were 16.6 · 10?6 and 5.5 · 10?6 M for [3H]retinol and bound [3H]retinol, respectively. This is the first time that retinol bound to cellular retinol-binding protein has been shown to undergo metabolic stransformation. The microsomal esterifying activity was destroyed by boiling for 1 min, or after freezing for 2 months. No clear requirement for ATP, CoA or fatty acid could be demonstrated.Of all the other tissues examined under the same experimental conditions as those used for the pigment epithelium, onlt intestine showed measurable activity. With larger amounts of tissue protein and longer incubation periods, activity was also detectable in microsomes of liver, testis and retina  相似文献   

20.
A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co2+ affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20?°C and pH of 8.3: kcat of 4.8?×?105?s?1 and kcat/Km of 5.6?×?107 M?1?×?s?1. This activity was potently inhibited by acetazolamide which showed a KI of 78.9?nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号