首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
 The nematode resistance locus Gpa2 was mapped on chromosome 12 of potato using information on the genomic positions of 733 known AFLP markers. The minimum number of AFLP primer combinations required to map Gpa2 was three. This demonstrates that a reference collection of potato AFLP markers may be a valuable tool for mapping studies in potato. By use of RFLP probes, Gpa2 was more precisely mapped at the distal end of chromosome 12. Gpa2 confers resistance to a distinct group of populations of the potato cyst nematode Globodera pallida and originates from the same potato accession as locus H1, conferring resistance to pathotype Ro1 of G. rostochiensis. This study shows that these two nematode resistance loci are unlinked and that Gpa2 is linked to the Rx1 locus conferring resistance to potato virus X. The efficiency of AFLPs for genetic mapping of a highly heterozygous crop like potato is discussed and compared with the RFLP technique. Received: 24 February 1997/Accepted: 2 May 1997  相似文献   

2.
Summary Late blight in potato is caused by the fungusPhytophthora infestans and can inflict severe damage on the potato crop. Resistance toP. infestans is either based on major dominantR genes conferring vertical, race-specific resistance or on minor genes inducing horizontal, unspecific resistance. A dihaploid potato line was identified which carried theR1 gene, conferring vertical resistance to allP. infestans races, with the exception of those homozygous for the recessive virulence allele of the locusV1. The F1 progeny of a cross between this resistant parent P(R1) and P(r), a line susceptible to all races, was analysed for segregation ofR1 and of restriction fragment length polymorphism (RFLP) markers distributed on the potato RFLP map comprising more than 300 loci. TheR1 locus was mapped to chromosome V in the interval between RFLP markers GP21 and GP179. The map position ofR1 was found to be very similar to the one ofRx2, a dominant locus inducing extreme resistance to potato virus X.  相似文献   

3.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

4.
Verticillium wilt disease of potato is caused predominantly by Verticillium albo-atrum and V. dahliae. StVe1 —a putative QTL for resistance against V. dahliae —was previously mapped to potato chromosome 9. To develop allele-specific, SNP-based markers within the locus, the StVe1 fragment from a set of 30 North American potato cultivars was analyzed. Three distinct and highly diverse haplotypes can be distinguished at the StVe1 locus. These were detected in 97%, 33%, and 10% of the cultivars analyzed. We tested for haplotype association and for genetic linkage between the StVe1 haplotypes and resistance of tetraploid potato to V. albo-atrum. Moreover, field resistance was assessed in diploid populations with known molecular linkage maps in order to identify novel QTLs. Resistance QTLs against V. albo-atrum were detected on four chromosomes (2, 6, 9, and 12) at the diploid level, with one QTL on chromosome 2 contributing over 40% to the total phenotypic variation of the trait. At the tetraploid level, a significant association between the StVe1-839-C haplotype and susceptibility to the disease was detected, suggesting that resistance-related genes directed against V. albo-atrum and V. dahliae are located in the same genomic region of chromosome 9. However, on the basis of the present analysis, we cannot determine whether these genes are closely linked or if a single gene provides resistance against both Verticillium species. To assess the usefulness of the StVe1-839-C haplotype for marker-assisted selection, we subjected the resistance data to Bayesian analysis, and calculated positive (0.65) and negative (0.75) predictive values, and overall predictive accuracy (0.72). Our results indicate that tagging of additional genes for resistance to Verticillium with molecular markers will be required for efficient marker-assisted selection.Communicated by M.-A. Grandbastien  相似文献   

5.
The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F7:9 recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.  相似文献   

6.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

7.
A backcross population, derived from the cross (S. tuberosumxS. spegazzinii)xS. tuberosum was used to map QTLs involved in nematode resistance, tuber yield and root development. Complete linkage maps were available for the interspecific hybrid parent as well as the S. tuberosum parent, and interval mapping for all traits was performed for both. Additionally, the intra- and inter-locus interactions of the QTLs were examined. The Gro1.2 locus, involved in resistance to G. rostochiensis pathotype Ro1, that was previously mapped in the S. tuberosumxS. spegazzinii F1 population, was located more precisely on chromosome 10. A new resistance locus, Gro1.4, also conferring resistance to G. rostochiensis pathotype Ro1, was found on chromosome 3. Different alleles of this locus originating from both parents contributed to the resistant phenotype, indicating multiallelism at this locus. No interlocus interactions were observed between these two resistance loci. For resistance to G. pallida no QTLs were detected. One minor QTL involved in tuber yield was located on chromosome 4. Two QTLs involved in root development and having large effects were mapped on chromosomes 2 and 6 and an epistatic interaction was found between these two loci.  相似文献   

8.
Clubroot disease, caused by the obligate plant pathogen Plasmodiophora brassicae Wor., is one of the most economically important diseases affecting Brassica crops in the world. The genetic basis of clubroot resistance (CR) has been well studied in three economically important Brassica species: B. rapa, B. oleracea, and B. napus. In B. rapa, mainly in Chinese cabbage, one minor and seven major CR genes introduced from European fodder turnips have been identified. Mapping of these CR genes localized Crr1 on R8, Crr2 on R1, CRc on R2, and Crr4 on R6 linkage groups of Chinese cabbage. Genes Crr3, CRa, CRb, and CRk mapped to R3, but at two separate loci, CRa and CRb are independent of Crr3 and CRk, which are closely linked. Further analysis suggested that Crr1, Crr2, and CRb have similar origins in the ancestral genome as in chromosome 4 of Arabidopsis thaliana. Genetic analysis of clubroot resistance genes in B. oleracea suggests that they are quantitative traits. Twenty-two quantitative trait loci (QTLs) were mapped in different linkage groups of B. oleracea. In B. napus, genetic analysis of clubroot resistance was found to be governed by one or two dominant genes, whereas resistance conferred by two recessive genes is reported. The quantitative analysis approach, however, proved that they are polygenic. In total, at least 16 QTLs have been detected on eight chromosomes of B. napus, N02, N03, N08, N09, N13, N15, N16, and N19. The chromosomal location of the other six QTLs is not clear. Cloning of any of these QTLs or resistance loci was not, however, possible until recently. Progress in genomics, particularly the techniques of comparative mapping and genome sequencing, supplements cloning and allows improved characterization of CR genes. Further development of DNA markers linked to CR genes will in turn hasten the breeding of clubroot-resistant Brassica cultivars.  相似文献   

9.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

10.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

11.
Summary The inheritance of flower colour in diploid potato (2 n = 2x = 24), was found to be controlled by three unlinked loci D, F and P. To determine the allelism with previously described loci and to dissect this oligogenic trait, a set of tester clones with well-defined genotypes was developed. By backcrossing the mapping population with these tester clones it was possible to obtain monogenic segregation ratios. These were required to detect linkage with RFLP loci and, despite distorted Mendelian ratios, the inheritance and mapping of the D, F and P loci could be unambiguously determined. Locus D, involved in the biosynthesis of red anthocyanins, was mapped on chromosome 2, while locus P, involved in the production of blue anthocyanins, was mapped on chromosome 11. Locus F, involved in the flower-specific expression of gene(s) accommodated by the D and P loci, was mapped on chromosome 10. The tester clones and the map position of the D, F and P loci may be of considerable value in simplifying the genetics of anthocyanin pigmentation.  相似文献   

12.
Phytophthora infestans is the most important fungal pathogen in the cultivated potato (Solanum tuberosum). Dominant, race-specific resistance alleles and quantitative resistance-the latter being more important for potato breeding- are found in the germplasm of cultivated and wild potato species. Quantitative trait loci (QTLs) for resistance to two races of P. infestans have been mapped in an F(1) progeny of a cross between non-inbred diploid potato parents with multiple alleles. Interval mapping methods based on highly informative restriction fragment length polymorphism markers revealed 11 chromosome segments on 9 potato chromosomes showing significant contrasts between marker genotypic classes. Whereas phenotypically no difference in quantitative resistance response was observed between the two fungal races, QTL mapping identified at least one race specific QT locus. Two QT regions coincided with two small segments on chromosomes V and XII to which the dominant alleles R1, conferring race specific resistance to P. infestans, Rx1 and Rx2, both inducing extreme resistance to potato virus X, have been allocated in independent mapping experiments. Some minor QTLs were correlated with genetic loci for specific proteins related to pathogenesis, the expression of which is induced after infection with P. infestans.  相似文献   

13.
We have used the linkage disequilibrium mapping method to test for an association between a candidate gene marker and resistance to Verticillium dahliae in tetraploid potato. A probe derived from the tomato Verticillium resistance gene (Ve1) identified homologous sequences (StVe1) in potato, which in a diploid population map to chromosome 9, in a position analogous to that of the tomato resistance gene. When a molecular marker closely linked (1.5 cM) to the homologues was used as a candidate gene marker on 137 tetraploid potato genotypes (mostly North American cultivars), the association between the marker and resistance was confirmed (P<0.001). The amount of phenotypic variation in resistance explained by the allele of the STM1051 marker was greater than 10% and 25% in two subpopulations that were inferred from coancestry data matrix. Cloning of homologues from the highly resistant potato cv. Reddale indicates that the resistance quantitative trait locus (QTL) comprises at least an eleven-member family, encoding plant-specific leucine-rich repeat proteins highly similar to the tomato Ve genes. The sequence analysis shows that all homologues are uninterrupted open reading frames and thus represent putative functional resistance genes. This is the first time that the linkage disequilibrium method has been used to find an association between a resistance gene and a candidate gene marker in tetraploid potato. We have shown that it is possible to map QTL directly on already available potato cultivars, without developing a new mapping population.Communicated by F. SalaminiAn erratum to this article can be found at  相似文献   

14.
Summary Resistance to the root cyst nematode Globodera rostochiensis is an agronomic trait that is at present incorporated into most new potato varieties. Major dominant genes are available that originate from wild and cultivated Solanum species closely related to the cultivated European potato (Solanum tuberosum ssp. tuberosum). One of those genes, H1, from S. Tuberosum ssp. andigena, was mapped to a distal position on potato chromosome V using restriction fragment length polymorphism (RFLP) markers. The H1 locus segregates independently from Gro1, a second dominant gene presumably from S. Spegazzinii that confers resistance to G. Rostochiensis and which has been mapped to chromosome VII. One marker, CP113, was linked without recombination to the H1 locus.  相似文献   

15.
Bacterial spot caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri is one of the most destructive diseases in tomatoes (Solanum lycopersicum L.) growing in tropical and subtropical regions. Exploring resistance genes from diverse germplasm and incorporating them into cultivated varieties are critical for controlling this disease. The S. pimpinellifolium accession PI128216 was reported to carry the Rx4 gene on chromosome 11 conferring hypersensitivity and field resistance to race T3. To facilitate the use of marker-assisted selection in breeding and map-based cloning of the gene, an F2 population derived from a cross between the susceptible variety OH88119 and the resistant accession PI128216 was created for fine mapping of the Rx4 gene. Using 18 markers developed through various approaches, we mapped the gene to a 45.1-kb region between two markers pcc17 and pcc14 on chromosome 11. A NBS-LRR class of resistance gene was identified as the candidate for the Rx4 gene based on annotation results from the International Tomato Annotation Group. Comparison of the genomic DNA sequences of the Rx4 alleles in PI128216 and OH88119 revealed a 6-bp insertion/deletion (InDel) and eight SNPs. The InDel marker was successfully used to distinguish resistance and susceptibility in 12 tomato lines. These results will facilitate cloning the Rx4 gene and provide a useful tool for marker-assisted selection of this gene in tomato breeding programs.  相似文献   

16.
Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene.  相似文献   

17.
Phytophthora infestans (Mont.) de Bary is the most important fungal pathogen of the potato (Solanum tuberosum). The introduction of major genes for resistance from the wild species S. demissum into potato cultivars is the earliest example of breeding for resistance using wild germplasm in this crop. Eleven resistance alleles (R genes) are known, differing in the recognition of corresponding avirulence alleles of the fungus. The number of R loci, their positions on the genetic map and the allelic relationships between different R variants are not known, except that the R1 locus has been mapped to potato chromosome V The objective of this work was the further genetic analysis of different R alleles in potato. Tetraploid potato cultivars carrying R alleles were reduced to the diploid level by inducing haploid parthenogenetic development of 2n female gametes. Of the 157 isolated primary dihaploids, 7 set seeds and carried the resistance alleles R1, R3 and R10 either individually or in combinations. Independent segregation of the dominant R1 and R3 alleles was demonstrated in two F1 populations of crosses among a dihaploid clone carrying R1 plus R3 and susceptible pollinators. Distorted segregation in favour of susceptibility was found for the R3 allele in 15 of 18 F1 populations analysed, whereas the RI allele segregated with a 1:1 ratio as expected in five F1 populations. The mode of inheritance of the R10 allele could not be deduced as only very few F1 hybrids bearing R10 were obtained. Linkage analysis in two F1 populations between R1, R3 and RFLP markers of known position on the potato RFLP maps confirmed the position of the R1 locus on chromosome V and localized the second locus, R3, to a distal position on chromdsome XI.  相似文献   

18.
 The dominant Nb gene of potato confers strain-specific hypersensitive resistance against potato virus X (PVX). A population segregating for Nb was screened for resistance by inoculating with PVX strain CP2, which is sensitive to Nb. Through a combination of bulked segregant analysis and selective restriction fragment amplification, several amplified fragment length polymorphism (AFLP) markers linked to Nb were identified. These were cloned and converted into dominant cleaved amplified polymorphic sequence (CAPS) markers. The segregation of these markers in a Lycopersicon esculentum×L. pennellii mapping population suggested that Nb is located on chromosome 5. This was confirmed by examining resistant and susceptible potato individuals with several tomato and potato chromosome-5-specific markers. Nb maps to a region of chromosome 5 where several other resistance genes– including R1, a resistance gene against Phytophthora infestans, Gpa, a locus that confers resistance against Globodera pallida, and Rx2, a gene that confers extreme resistance against PVX–have previously been identified. Received: 2 January 1997/Accepted: 7 February 1997  相似文献   

19.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

20.
A framework linkage map was developed using 284 F10 recombinant inbred lines (RILs) from a ’Lemont’×’Teqing’ rice cultivar cross. Evaluation of a subset of 245 of these RILs with five races of the rice blast pathogen permitted RFLP mapping of three major resistance genes from Teqing and one major gene from Lemont. All mapped genes were found to confer resistance to at least two blast races, but none conferred resistance to all five races evaluated. RFLP mapping showed that the three resistance genes from Teqing, designated Pi-tq5, Pi-tq1 and Pi-tq6, were present on chromosomes 2, 6 and 12, respectively. The resistance gene from Lemont, Pi-lm2, was located on chromosome 11. Pi-tq1 is considered a new gene, based on its reaction to these five races and its unique map location, while the other three genes may be allelic with previously reported genes. Lines with different gene combinations were evaluated for disease reaction in field plots. Some gene combinations showed both direct effects and non-linear interaction. The fact that some of the lines without any of the four tagged genes exhibited useful levels of resistance in the field plots suggests the presence of additional genes or QTLs affecting the blast reaction segregating in this population. Received: 16 December 1999 / Accepted: 28 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号