首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amiloride-sensitive Na+ channel from bovine trachea was isolated using an affinity gel and reconstituted into a planar lipid bilayer. This channel exhibited: 1. Fluctuations with long duration opening and closing times, weak voltage dependence, and a conductance of 6 pS. 2. Selectivity of at least 100-fold for Na+ over K+. 3. Saturates at a Na+ concentration of 90 mM. 4. Blocked by amiloride, 50% inhibition at 0.1 microM.  相似文献   

2.
Secretion of chloride ions via apically located anion-selective channels in epithelia regulates fluid formation and cytosolic Cl- homeostasis. In order to understand the biochemical basis of Cl- channel function, we attempted to isolate this transporter from bovine tracheal apical membranes. Initially, peripheral polypeptides were removed from apically enriched vesicles by washing with alkaline buffer (pH 10.8) containing 2 mM CHAPS. The resulting pellet contained 50-60% of the original protein and displayed 2-fold enhanced Cl- channel activity compared to untreated vesicles. The pellet was treated with Triton X-100, and the solubilized proteins were separated on the cationic exchanger CM-cellufine. Washing the resin with a pH 8.0-8.3 buffer eluted a fraction with enriched Cl- channel activity. This fraction contained less than 5% of the total solubilized protein. A subsequent separation was performed using the anionic exchanger AM-cellufine. The highest activity was found in the fractions eluted by 80-120 mM KCl. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed a major 38,000-Da protein band. This band was electroeluted from the gel under nondenaturing and nonreducing conditions and reconstituted into phosphatidylcholine liposomes. KCl-loaded vesicles containing the purified 38-kDa protein transported up to 5 nmol of 125I-/mg of protein/5 min. This value was 15-fold higher than the uptake measured in vesicles reconstituted with total solubilized membrane proteins and 4-fold higher compared to the CM-cellufine-enriched fraction. The observed 125I- uptake was 90% inhibited by 100 microM 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate or 10 microM valinomycin. In summary, we have developed a biochemical protocol for the isolation of a 38 kDa protein mediating potential-dependent and 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate-sensitive Cl- channel activity.  相似文献   

3.
4.
We describe thebiochemical properties of an eicosanoid-modulated Clchannel and assess the mechanisms by which the epoxyeicosatrienoic acids (EETs) alter both its unitary conductance and its openprobability (Po). After a purification protocolinvolving wheat-germ agglutinin affinity and anion-exchangechromatography, the proteins were sequentially inserted into liposomes,which were then fused into PLBs. Functional and biochemicalcharacterization tests confirm that the Cl channel is a55-kDa glycosylated monomer with voltage- and Ca2+concentration-independent activity. 5,6- and 8,9-EET decreased theconductance of the native channel (control conductance: 70 ± 5 pSin asymmetrical 50 mM trans/250 mM cis CsCl) in aconcentration-dependent manner, with respective 50% inhibitoryconcentration values of 0.31 and 0.42 µM. These regioisomerssimilarly decreased the conductance of the purified channel (controlconductance value: 75 ± 5 pS in asymmetrical 50 mMtrans/250 mM cis CsCl), which had been stripped of its native proteic and lipidic environment. On the other hand, 5,6- and 8,9-EETs decreased the Po of the nativechannel with respective 50% inhibitory concentration values of 0.27 and 0.30 µM but failed to alter the Po of thepurified protein. Thus we suggest that the effects of these EETs onchannel conductance likely result from direct interactions ofEET anions with the channel pore, whereas the alterationof Po requires a lipid environment of specificcomposition that is lost on solubilization and purification of the protein.

  相似文献   

5.
The GABAA/benzodiazepine receptor has been solubilized from bovine brain membranes and purified by benzodiazepine affinity chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed two major protein species of 53 and 56 kDa. The purified protein has been reconstituted, in a functionally active form, into phospholipid vesicles. Chloride flux responses of the reconstituted preparations were investigated in stopped-flow experiments by monitoring fluorescence changes of a chloride-sensitive dye trapped within the vesicles. Flux was rapidly stimulated by muscimol and this response was potentiated by diazepam and blocked by desensitization of the receptor and by preincubation with the channel blocker, picrotoxin.  相似文献   

6.
We have purified to homogeneity a 38-kDa protein (called p38) from bovine tracheal epithelium. This protein, when reconstituted into liposomes, mediates stilbene disulfonate-sensitive 125I- conductive uptake. On nonreduced or partially reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this protein associates into a doublet of 62-64 kDa. In some experiments a multimer of 141 kDa was also observed. Rabbit polyclonal anti-P38 antibodies have been produced and used to immunopurify the native transporter. Upon reconstitution of the immunoaffinity-purified protein into liposomes, a 260-fold enhancement of 4,4'-bis(isothiocyano)-2,2'-stilbenedisulfonate and valinomycin-sensitive 125I- uptake was observed as compared to proteoliposomes containing unseparated material. On Western blots of total solubilized tracheal membrane proteins or semipurified fractions, the antibody recognized the 62-64-kDa doublet much better than the original 38-kDa antigen. Similar protein bands were detected in T84 and CFPAC cells as well. However, if apical membrane proteins were first separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, the antibody recognized major bands at 140 and approximately 240 kDa. Upon partial reduction, immunolabeling of these proteins diminished with the concomitant appearance of the 62-64-kDa doublet. Upon complete reduction, the appearance of 32- and 38-kDa proteins was evident with the disappearance of the 62-64-kDa doublet. We hypothesize that the native Cl-channel is a heteromer containing at least four subunits connected by S-S bridges.  相似文献   

7.
A protein conferring passive chloride permeability was isolated from a N-octylglucoside solubilized extract of partially purified H(+)-transporting osteoclast cell membranes. Purification was achieved by binding of solubilized protein to an amine-linked 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) Sepharose 4B column and elution with 50 mM KCl. A major protein, with MR = 60 kD on 10% SDS-PAGE, was obtained, which was further purified to homogeneity by HPLC gel filtration. This protein introduced 36Cl- permeability when reconstituted in phospholipid membranes by equilibrium dialysis. The Cl- transport recovered in reconstituted membranes retained sensitivity to DIDS confirming the identity of the isolated protein as a stilbene-sensitive chloride channel.  相似文献   

8.
Summary Chloride channels were detergent-extracted fromTorpedo electroplax plasma membrane vesicles and reconstituted into liposomes by rapid detergent removal and a freeze-thawsonication procedure. Concentrative uptake of36Cl, driven by a Cl gradient was used to determine conductance properties of reconstituted channels. Chloride flux assayed by this method is strongly selective for Cl over cations, is blocked by SCN, inactivated by treatment with DIDS, and exhibits an anion selectivity sequence Cl>Br>F>SO 4 2– , as does the voltagegated Cl channel fromTorpedo observed in planar lipid bilayers. The channels are localized to the noninnervated face of the electrocyte, and a novel trapped-volume method is used to estimate a channel density on the order of 500 pmol/mg protein. An initial fractionation of the membrane extract by anion exchange chromatography yields fivefold enrichment of the channel activity.  相似文献   

9.
The GABAA/benzodiazepine receptor has been solubilized from membrane preparations of bovine cerebral cortex and has been reconstituted, in a functionally active form, into phospholipid vesicles. In preliminary experiments, the receptor was labeled with the photoactive benzodiazepine [3H]flunitrazepam prior to solubilization. A peptide of apparent molecular weight 53,500 was specifically labeled by this method, and this was used as a marker for the receptor during the reconstitution procedures. The labeled protein was solubilized with approximately 40% efficiency by 1% beta-octyl glucoside. Reconstitution was achieved by mixing the solubilized proteins with a 4:1 mixture of soybean asolectin and bovine brain phospholipids, followed by chromatography on Sephadex G-50-80 to remove detergent. The incorporation of the GABAA receptor into membrane vesicles has been verified by sucrose gradient centrifugation in which the [3H]-flunitrazepam-labeled peptide comigrated with [14C]phosphatidylcholine used as a lipid marker. Vesicles prepared without labeled markers retained the ability to bind both [3H]flunitrazepam and the GABA analogue [3H]muscimol. Furthermore, the binding parameters were very similar to those measured using native membrane preparations. A novel fluorescence technique has been used to measure chloride transport mediated by the GABAA receptor in reconstituted vesicles. Chloride influx was rapidly stimulated in the presence of micromolar concentrations of muscimol and was blocked by preincubation of the membranes with muscimol (desensitization). Flux was also blocked by pretreatment with the competitive GABAA receptor blocker bicuculline or with the noncompetitive GABAA receptor antagonist picrotoxin.  相似文献   

10.
Functional reconstitution of the isolated erythrocyte water channel CHIP28.   总被引:26,自引:0,他引:26  
Measurements of water permeability indicate the existence of a facilitated water transporting pathway in erythrocytes, kidney tubules and amphibian urinary bladder. Two lines of evidence suggest that one type of water channel is an approximately 30-kDa protein: the approximately 30-kDa target size determined by radiation inactivation (van Hoek, A. N., Hom, M. L., Luthjens, L. H., de Jong, M. D., Dempster, J. A., and van Os, C. H. (1991) J. Biol. Chem. 266, 16633-16635) and the increased water permeability in oocytes that express mRNA encoding a 28-kDa erythrocyte protein (CHIP28, Preston, B. M., Carroll, T. P., Guggino, W. B., and Agre, P. (1992) Science 256, 385-387). We report direct evidence that CHIP28 is the erythrocyte water channel. Osmotic water permeability (Pf) remained high (0.029 cm/s, 37 degrees C) when erythrocyte membranes were stripped of nearly all proteins except for CHIP28. N-terminal sequence analysis confirmed that the 28-kDa protein was CHIP28. Pf in proteoliposomes reconstituted with solubilized CHIP28 was high (Pf = 0.03 cm/s, 37 degrees C), the activation energy was low (2.2 kcal/mol), and Pf was decreased by greater than 50-fold by mercurial sulfhydryl reagents and Me2SO. The single-channel water permeability was approximately 10(-13) cm3/s, slightly higher than that of the gramicidin A channel. The water channel excluded the small solute urea. These data establish a procedure to reconstitute functional water channels into liposomes and demonstrate that CHIP28 is the erythrocyte water channel.  相似文献   

11.
Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We developed a method to reconstitute functional voltage-gated ion channels into cell-sized Giant Unilamellar Vesicles (GUVs) in which membrane composition, tension and geometry can be controlled. First, a voltage-gated potassium channel, KvAP, was purified, fluorescently labeled and reconstituted into small proteoliposomes. Small proteoliposomes were then converted into GUVs via electroformation. GUVs could be formed using different lipid compositions and buffers containing low (5 mM) or near-physiological (100 mM) salt concentrations. Protein incorporation into GUVs was characterized with quantitative confocal microscopy, and the protein density of GUVs was comparable to the small proteoliposomes from which they were formed. Furthermore, patch-clamp measurements confirmed that the reconstituted channels retained potassium selectivity and voltage-gated activation. GUVs containing functional voltage-gated ion channels will allow the study of channel activity, distribution and diffusion while controlling membrane state, and should prove a powerful tool for understanding how the membrane modulates cellular excitability.  相似文献   

12.
ClC-type anion-selective channels are widespread throughout eukaryotic organisms. BLAST homology searches reveal that many microbial genomes also contain members of the ClC family. An Escherichia coli-derived ClC Cl(-) channel homologue, "EriC," the product of the yadQ gene, was overexpressed in E. coli and purified in milligram quantities in a single-step procedure. Reconstitution of purified EriC into liposomes confers on these membranes permeability to anions with selectivity similar to that observed electrophysiologically in mammalian ClC channels. Cross-linking studies argue that EriC is a homodimer in both detergent micelles and reconstituted liposomes, a conclusion corroborated by gel filtration and analytical sedimentation experiments.  相似文献   

13.
《Biosensors》1986,2(6):363-373
It is shown that polymerized diacetylenic lecithins may be used for the functional reconstitution of a membrane protein. Purple membrane patches isolated from Halobacterium halobium and liposomes of the polymerizable diacetylenic lecithin 1,2-bis(10,12 tricosadiynoyl)-sn-glycero-3-phosphocholine were sonicated together to form mixed vesicles highly enriched in the polymerizable lipid. A net inward proton flow on illumination as determined by the change of pH of the external medium demonstrated the stability of the vesicular form in this mixed lipid system as well as vectorial orientation of the bacteriorhodopsin in the bilayer. When bacteriorhodopsin was incorporated in non-polymerizable lipids, irradiation with ultraviolet light resulted in complete loss of function. In the diacetylenic lipids, the loss of function was slower than the increase in polymer concentration. This demonstrates the utility of the diacetylenic lecithin system for study of interactions between membrane proteins and polymerizable lipids, as well as its potential in the development of biosensors based on membrane proteins.  相似文献   

14.
The protein(s) that constitute(s) the cGMP-regulated channel in vertebrate photoreceptors has been solubilized from rod outer segment membranes and reincorporated into the membrane of calcium-containing liposomes. The properties of the reconstituted channel protein were determined by studying the cGMP-stimulated efflux of Ca2+ from these liposomes. Among several detergents tested the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) proved to be the most suitable. Solubilization of channel activity was found to be optimal at a detergent concentration of about 18 mM. The presence of Ca2+ ions and phospholipids during solubilization greatly increased the channel stability. The reconstituted channel shared most but not all properties with the channel in situ. It is cooperatively activated by cGMP with an EC50 of 19 microM. The cooperativity as determined from Hill plots was n = 2.7. Unlike the cGMP-sensitive channel in the native membrane of isolated discs and excised patches of plasma membrane it is not blocked by l-cis-diltiazem. Reconstitution of this channel protein(s) may serve as a valuable tool for identifying the polypeptide composition and to study structural and functional aspects of the purified protein(s).  相似文献   

15.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl? channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl? movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl? channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.  相似文献   

16.
In Staphylococcus aureus, the transport of dicarboxylates is mediated in part by the Na+-linked carrier protein SdcS. This transporter is a member of the divalent-anion/Na+ symporter (DASS) family, a group that includes the mammalian Na+/dicarboxylate cotransporters NaDC1 and NaDC3. In earlier work, we cloned and expressed SdcS in Escherichia coli and found it to have transport properties similar to those of its eukaryotic counterparts (J. A. Hall and A. M. Pajor, J. Bacteriol. 187:5189-5194, 2005). Here, we report the partial purification and subsequent reconstitution of functional SdcS into liposomes. These proteoliposomes exhibited succinate counterflow activity, as well as Na+ electrochemical-gradient-driven transport. Examination of substrate specificity indicated that the minimal requirement necessary for transport was a four-carbon terminal dicarboxylate backbone and that productive substrate-transporter interaction was sensitive to substitutions at the substrate C-2 and C-3 positions. Further analysis established that SdcS facilitates an electroneutral symport reaction having a 2:1 cation/dicarboxylate ratio. This study represents the first characterization of a reconstituted Na+-coupled DASS family member, thus providing an effective method to evaluate functional, as well as structural, aspects of DASS transporters in a system free of the complexities and constraints associated with native membrane environments.  相似文献   

17.
VacA is a unique protein toxin secreted by the human pathogen Helicobacter pylori. At a neutral pH, the cytotoxin self-associates into predominantly dodecameric complexes. In this report, we show that at an acidic pH, VacA forms anion selective channels in planar phospholipid bilayers. Similar to several other chloride channels, the VacA channel exhibits a moderate selectivity for anions over cations (P(Cl):P(Na) = 4.2:1), inhibition by the blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and a permeability sequence, SCN- > I- > Br- > Cl- > F, consistent with a 'weak field strength' binding site for the permeant anion. Single channel recordings reveal rapid transitions (486 s(-1)) between the closed state and a single open state of 24 pS (+60 mV, 1.5 M NaCl). Evaluation of the rate of increase in macroscopic current as well as atomic force microscopy suggest that this VacA channel is a hexamer, formed by the assembly of membrane-bound monomers. Not only are these VacA channels likely to play an important role in the pathological activity of this toxin, but they may also serve as a model system to further investigate the mechanism of anion selectivity in general.  相似文献   

18.
Prostaglandin E2 (PGE2) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet (Negishi, M., Ito, S., Tanaka, T., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1987) J. Biol. Chem. 262, 12077-12084). In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, we purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its alpha subunit from two known pertussis toxin substrate G-proteins (Gi and Go) purified from bovine brain. The molecular weight of the alpha subunit was 40,000, which is between those of Gi and Go. The purified protein was also distinguished immunologically from Gi and Go and was referred to as Gam. PGE receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid and freed from G-proteins by wheat germ agglutinin column chromatography. Reconstitution of the PGE receptor with pure Gam, Gi, or Go in phospholipid vesicles resulted in a remarkable restoration of [3H]PGE2 binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. The displacement of [3H]PGE2 binding was specific for PGE1 and PGE2. Furthermore, addition of PGE2 stimulated the GTPase activity of the G-proteins in reconstituted vesicles. These results indicate that the PGE receptor can couple functionally with Gam, Gi, or Go in phospholipid vesicles and suggest that Gam may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.  相似文献   

19.
20.
Romio L  Musante L  Cinti R  Seri M  Moran O  Zegarra-Moran O  Galietta LJ 《Gene》1999,228(1-2):181-188
The bovine CaCC protein is a putative Ca2+-dependent Cl- channel of airway epithelial cells. Therefore, CaCC proteins could contribute to transepithelial Cl- transport and accordingly modify the phenotype of cystic fibrosis (CF) patients. We have identified a murine EST containing a full-length cDNA coding for a 902-amino-acid protein highly homologous to bovine CaCC. The murine gene (mCaCC) maps to chromosome 3 at the H2-H3 band and is expressed, as indicated by Northern blot analysis, in mouse skin and kidney but not in brain, heart, lung or testis. RT-PCR indicates a low expression in tracheal epithelial cells. Heterologous expression of mCaCC in Xenopus oocytes elicits membrane currents that are anion-selective and inhibited by DIDS and by niflumic acid, a blocker of the endogenous chloride current in oocytes. The identification of genes belonging to the CaCC family will help to evaluate their role as ion channels or channel regulators and their actual contribution to epithelial chloride transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号