首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
脑缺血再灌流大鼠海马hsp70及bcl—2基因的表达   总被引:10,自引:0,他引:10  
为进一步了解中枢神经系统中选择性易损伤的分子机制,采用大鼠短暂前脑缺血再灌流损伤动物模型,应用Northern杂交、原位杂交及免疫组织化学方法,检测了hsp70及bcl-2基因的表达及其组织学分布。发现易损伤的海马CA1区锥体细胞出现hsp70基因的诱导表达,BCL-2蛋白合成受抑制;而耐受缺血的海马CA3区锥体细胞则明显地持续表达BCL-2蛋白,却未见明显的hsp70基因表达。因此提示,hsp70基因的表达是神经元缺血的应激指征,也可能对神经元有保护作用;BCL-2蛋白对神经元有保护作用  相似文献   

3.
The ability to synthesize a 68,000- to 70,000-Da protein (hsp) in heat-shocked early Xenopus laevis embryos is dependent on the stage of development. Whereas late blastula and later stage embryos synthesize hsp68-70 after heat shock, cleavage stages are incompetent with respect to hsp synthesis. In vitro translation experiments and RNA blot analyses demonstrate that enhanced synthesis of hsp68-70 is associated with an accumulation of hsp68-70 mRNA. Examination of the effect of heat shock on preexisting actin mRNA reveals that heat shock promotes a reduction in the levels of actin mRNA in cleavage embryos but has no discernible effect on actin mRNA levels in neurula embryos. Finally, the acquisition of the heat-shock response (i.e., synthesis of hsp68-70 and accumulation of hsp70 mRNA) during early Xenopus development is correlated with the acquisition of thermotolerance.  相似文献   

4.
5.
6.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

7.
8.
9.
Rapidly growing cells usually have high levels of ribosome biogenesis. The sequential expression of protooncogenes during the transition of quiescent hepatocytes to the replicative stage was assumed to be followed by activation of cellular genes related to cell growth such as ribosome biosynthesis. First, the expression of major nucleolar protein (nucleolin or C23) and major heat-shock protein (hsp 70) genes was examined during rat liver regeneration. hsp 70 may function in cell growth and has a characteristic nucleolar location after heat shock. Both nucleolin and hsp 70 mRNA began to increase simultaneously after peaks of c-fos and c-myc, showed a peak 6 h after partial hepatectomy, and declined to the control levels around 20 h. That is, the peaks of nucleolin and hsp 70 mRNA precede the peak of ribosome formation (12-20 h) and DNA replication (24 h). Second, the behavior of nucleolin and hsp 70 mRNA was examined in primary cultured hepatocytes during their G0-G1 transition. Although the amounts of c-myc mRNA reached a plateau around 20 h after the initiation of culture and remained at these levels, DNA synthesis has never been found to start without the addition of EGF and insulin to this system. Both nucleolin and hsp 70 mRNA began to increase at around 20 h (prereplicative stage) and simultaneously decreased in inverse proportion to DNA synthesis induced by these growth factors. Thus, it is possible that the simultaneous enhancement of nucleolin and hsp 70 genes as described above is not merely coincidental, but is important biologically during the transition of quiescent hepatocytes to proliferative cells.  相似文献   

10.
Regulation of HSP70 synthesis by messenger RNA degradation.   总被引:14,自引:1,他引:13       下载免费PDF全文
When Drosophila cells are heat shocked, hsp70 messenger RNA (mRNA) is stable and is translated at high efficiencies. During recovery from heat shock, hsp70 synthesis is repressed and its messenger RNA (mRNA) is degraded in a highly regulated fashion. Dramatic differences in the timing of repression and degradation are observed after heat treatments of different severities. The 3' untranslated region (UTR) of the hsp70 mRNA was sufficient to transfer this regulated degradation to heterologous mRNAs. Altering the translational efficiency of the message or changing its natural translation-termination site did not alter its pattern of regulation, although in some cases it changed the absolute rate of degradation. We have previously shown that hsp70 mRNA is very unstable when it is expressed at normal growth temperatures (from a metallothionein promoter). We report here that the 3' untranslated region of the hsp70 mRNA is responsible for this instability as well. We postulate that a mechanism for degrading hsp70 mRNA pre-exists in Drosophila cells, that it is inactivated by heat shock and that it is the reactivation of this mechanism that is responsible for hsp70 repression during recovery. This degradation system may be the same as that used by other unstable mRNAs.  相似文献   

11.
12.
13.
Xenopus hsp 70 genes are constitutively expressed in injected oocytes.   总被引:27,自引:8,他引:19       下载免费PDF全文
M Bienz 《The EMBO journal》1984,3(11):2477-2483
Xenopus heat-shock genes are transiently heat-inducible in somatic cells, but they are also subject to a long-term developmental control in oogenesis and early embryogenesis. In order to understand whether different genes or different promoter elements are involved in the two types of control, several genomic clones coding for Xenopus heat-shock proteins, hsp 70 and hsp 30, were isolated, characterised and tested for expression in oocytes and COS cells. Three isolated hsp 70 genes are nearly identical in their promoter and mRNA leader sequences, indicating that there is only one type of hsp 70 gene. These promoters contain a consensus sequence element (CT-GAA--TTC-AG) upstream of the TATA-box, which is presumably required for their transient heat-inducibility. The two isolated hsp 30 genes show 5'-flanking sequences similar to each other, except that one of them shows a homology disruption precisely around the consensus sequence element. The same gene contains a frameshift mutation in the protein coding part and, since it cannot be expressed after introduction into oocytes or COS cells, it is probably a pseudogene. The other hsp 30 gene is strongly heat-inducible in injected oocytes or transfected COS cells. In contrast, the hsp 70 genes are strongly heat-inducible in COS cells, but their expression is highly efficient in injected oocytes at the normal temperature and is not increased during heat shock. This represents correct cell type-specific regulation of a cloned reintroduced gene, since the endogenous hsp 70 genes are constitutively activated during oogenesis, leading to the accumulation of stored hsp 70 mRNA in oocytes.  相似文献   

14.
15.
Most mammalian cells respond to brief incubation at elevated temperatures by enhanced or new synthesis of a set of heat-shock proteins (hsp). In mouse cells, as determined by SDS--one-dimensional gel electrophoresis, the most prominent hsps have molecular masses of approximately 89,000, 70,000, and 68,000 Da. When the heat-shock response of the mouse erythroleukemia cell line D1B, or two other DBA/2 cell lines (707C1 and 745C2), was examined by [35S]methionine labelling, following heat shocks of 10 min at 42 or 44 degrees C, or 1 h at 45 degrees C, no protein band corresponding to hsp 68 was observed. However, the synthesis of both hsp 89 and hsp 70 was enhanced. Northern blot analysis of cytoplasmic RNA extracted from control and stressed cells indicated that hsp 68 mRNA was absent, even after stresses of up to 1 h at 45 degrees C. Differentiation induced by dimethyl sulphoxide (DMSO) (monitored by the induction of globin synthesis) had no effect on hsp 68 expression in D1B cells; also, hsp 68 could not be induced at various stages of differentiation (0-72 h). Southern blot analysis showed that all three hsp-68 genes were present and not rearranged, and apparently did not carry any deletion in their 5' ends. To determine whether methylation could be involved in maintaining the genes in their silent state, we treated cells with 10 microM 5-azacytidine for 48 h. No hsp 68 expression was observed following such treatment in either undifferentiated or DMSO-induced differentiated D1B cells. Furthermore, Southern blot analysis of MspI/HpaII-digested genomic D1B DNA did not display any differences in methylation patterns around the promoter region of the probed gene compared with control cells, indicating that methylation is not involved in hsp-68 repression. When chimeric plasmids carrying the bacterial chloramphenicol acetyl transferase gene under regulation of the mouse hsp-68 or Drosophila hsp-70 promoters were transfected into D1B cells, minimal (2-fold) or no induction was observed, in contrast with the 60-fold induction seen in a control myeloma cell line. These results suggest a trans-acting mechanism of hsp-68 repression in erythroleukemia cells.  相似文献   

16.
The 70 kDa heat shock protein, hsp72, is known to be induced following transient global ischemia in brain, as detected by immunocytochemistry and in situ hybridization techniques. However, while hsp72 mRNA is expressed rapidly following postischemic recirculation, immunocytochemistry fails to detect hsp72 protein for many hours after such insults, even in cell populations that readily express Fos and other proteins encoded by ischemia-induced mRNAs. In the present study, hsp72 expression in gerbil hippocampus was compared by immunocytochemistry and immunoblot methods at several intervals following 10 min ischemia. As established in previous studies, hsp72 immunoreactivity remained undetectable in postischemic neurons at 6 h following such insults. In contrast, immunoblots of dissected gerbil hippocampus demonstrated nearly maximal accumulation of hsp72 at this time point. These results indicate that the protein is present, but cryptic to detection in perfusion-fixed sections, during early recirculation. The constitutively expressed heat shock cognate protein, hsc70, did not show significant changes in level or distribution by either method, except for a decrease in CA1 staining at 48 h. These results confirm that hsp72 rapidly accumulates to high levels in postischemic hippocampus, and suggest that further studies of its subcellular localization during this interval may offer insight into its functional role as a component of the stress response in neurons after such insults.  相似文献   

17.
18.
19.
谷氨酸对嗜铬细胞瘤细胞热休克蛋白70 mRNA的诱导分析   总被引:2,自引:0,他引:2  
Wu BY  Lou SJ  Xu RB  Chen YZ 《生理学报》1998,50(5):557-562
热休克反应普遍存在于从细菌到人的整个生物界。除热外,多种应激原都可引起热休克蛋白的诱导。至于神经递质是否能够诱导热休克蛋白的表达,目前并不清楚。本文以诱导型热休克蛋白(hsp)70的cDNA为探针,运用Northern blot的方法,在嗜铬细胞瘤细胞(PC12)上,分析了谷氨酸和乙酰胆碱对hsp70 mRNA的诱导作用。在此基础上又初步分析了起作用的递质受体。结果表明:在一定的浓度(50 ̄500  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号