首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wave speed (also called pulse wave velocity) is the speed by which disturbance travels along the medium and it depends on the mechanical and geometrical properties of the vessel and on the density of the blood. Wave speed is a parameter of clinical relevance because it is an indicator of arterial stiffness and cardiovascular diseases.  相似文献   

2.
The relationship between the mechanical properties of a fibrous polyurethane arterial prosthesis and the graft manufacturing process variables was studied from uniaxial tensile tests. A non-linear model was used to characterize the cylindrical elastic properties. Experiments on cylindrical segments were carried out to determine the constitutive constants and to assess the applicability of the model to the polyurethane graft. The compliance of 4 mm internal diameter grafts with various wall-thicknesses was predicted. The results were used to produce grafts with compliance matched to that of the carotid and femoral arteries.  相似文献   

3.
Analysis of a femoral hip prosthesis designed to reduce stress shielding   总被引:11,自引:0,他引:11  
The natural stress distribution in the femur is significantly altered after total hip arthroplasty (THA). When an implant is introduced, it will carry a portion of the load, causing a reduction of stress in some regions of the remaining bone. This phenomenon is commonly known as stress shielding. In response to the changed mechanical environment the shielded bone will remodel according to Wolff's law, resulting in a loss of bone mass through the biological process called resorption. Resorption can, in turn, cause or contribute to loosening of the prosthesis. The problem is particularly common among younger THA recipients. This study explores the hypothesis that through redesign, a total hip prosthesis can be developed to substantially reduce stress shielding. First, we describe the development of a new femoral hip prosthesis designed to alleviate this problem through a new geometry and system of proximal fixation. A numerical comparison with a conventional intramedullary prosthesis as well as another proximally fixed prosthesis, recently developed by Munting and Verhelpen (1995. Journal of Biomechanics 28(8), 949–961) is presented. The results show that the new design produces a more physiological stress state in the proximal femur.  相似文献   

4.
The temporomandibular joint (TMJ) is an anatomical set of the buco-maxillary system that allows the movement of the mandible in most varied ways. Several factors can influence the malfunctioning of the joint and lead to the use of a total prosthesis. However, current prostheses do not supply the maximum amplitude of movement during protrusion and opening, due to mainly the anatomical differences between patients. For this reason, this article aims to study the patient’s kinematic characteristics for a better comprehension of the problem and, consequently, to develop a numerical model for TMJ prostheses able to recover the healthy movement. The numerical model is based on the development of a mechanical joint whose profile is able to reproduce the movement of the health system. The results obtained through the developed model showed a good agreement with the experimental results, representing, therefore, a promising alternative to approach the problems related to TMJ.  相似文献   

5.
Prostheses can release some metallic elements to the surrounding tissues, particularly when they are not covered with a biomaterial layer and when an unsealing process happens. We try to measure major and trace elements in these tissues with an experimentally sensitive method. Proton-induced X-ray emission is used to detect about 10 elements in tissue. Tissues are calcinated and deposited in a thin layer before irradiation. Results are obtained in a standard and samples from three patients. We observe contamination by Ti, Cr, Ni, and Zn in the tissues. Correlations are to be studied between these atomic transfers and prosthesis in the patient.  相似文献   

6.
A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purpose, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealised as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimise the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally-stressed lightweight socket shell, the panels in the neighbourhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analysed, to recommend optimum variables in orientations and densities of reinforcing fibers.  相似文献   

7.
Transhumeral amputation has a significant effect on a person’s independence and quality of life. Myoelectric prostheses have the potential to restore upper limb function, however their use is currently limited due to lack of intuitive and natural control of multiple degrees of freedom. The goal of this study was to evaluate a novel transhumeral prosthesis controller that uses a combination of kinematic and electromyographic (EMG) signals recorded from the person’s proximal humerus. Specifically, we trained a time-delayed artificial neural network to predict elbow flexion/extension and forearm pronation/supination from six proximal EMG signals, and humeral angular velocity and linear acceleration. We evaluated this scheme with ten able-bodied subjects offline, as well as in a target-reaching task presented in an immersive virtual reality environment. The offline training had a target of 4° for flexion/extension and 8° for pronation/supination, which it easily exceeded (2.7° and 5.5° respectively). During online testing, all subjects completed the target-reaching task with path efficiency of 78% and minimal overshoot (1.5%). Thus, combining kinematic and muscle activity signals from the proximal humerus can provide adequate prosthesis control, and testing in a virtual reality environment can provide meaningful data on controller performance.  相似文献   

8.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

9.
Local reflection coefficients (R) provide important insights into the influence of wave reflection on vascular haemodynamics. Using the relatively new time-domain method of wave intensity analysis, R has been calculated as the ratio of the peak intensities (RPI) or areas (RCI) of incident and reflected waves, or as the ratio of the changes in pressure caused by these waves (RΔP). While these methods have not yet been compared, it is likely that elastic non-linearities present in large arteries will lead to changes in the size of waves as they propagate and thus errors in the calculation of RPI and RCI. To test this proposition, RPI, RCI and RΔP were calculated in a non-linear computer model of a single vessel with various degrees of elastic non-linearity, determined by wave speed and pulse amplitude (ΔP+), and a terminal admittance to produce reflections. Results obtained from this model demonstrated that under linear flow conditions (i.e. as ΔP+→0), RΔP is equivalent to the square-root of RPI and RCI (denoted by RPIp and RCIp). However for non-linear flow, pressure-increasing (compression) waves undergo amplification while pressure-reducing (expansion) waves undergo attenuation as they propagate. Consequently, significant errors related to the degree of elastic non-linearity arise in RPI and RCI, and also RPIp and RCIp, with greater errors associated with larger reflections. Conversely, RΔP is unaffected by the degree of non-linearity and is thus more accurate than RPI and RCI.  相似文献   

10.
11.
On the basis of numerical simulations of the partial McAllister-Noble-Tsien equations quantitatively describing the dynamics of electrical processes in conductive cardiac Purkinje fibers we reveal unusual – soliton-like – regimes of interaction of nonlinear excitation pulses governing the heart contraction rhythm: reflection of colliding pulses instead of their annihilation. The phenomenological mechanism of the reflection effects is that in a narrow (but finite) range of the system parameters the traveling pulse presents a doublet consisting of a high-amplitude leader followed by a low-amplitude subthreshold wave. Upon collisions of pulses the leaders are annihilated, but subthreshold waves summarize becoming superthreshold and initiating two novel echo-pulses traveling in opposite directions. The phenomenon revealed presents an analogy to the effect of reflection of colliding nerve pulses, predicted recently, and can be of use in getting insight into the mechanisms of heart rhythm disturbances.  相似文献   

12.
The cellular mechanisms that couple activity of glutamatergic synapses with changes in blood flow, measured by a variety of techniques including the BOLD signal, have not previously been modelled. Here we provide such a model, that successfully accounts for the main observed changes in blood flow in both visual cortex and somatosensory cortex following their stimulation by high-contrast drifting grating or by single whisker stimulation, respectively. Coupling from glutamatergic synapses to smooth muscle cells of arterioles is effected by astrocytes releasing epoxyeicosatrienoic acids (EETs) onto them, following glutamate stimulation of the astrocyte. Coupling of EETs to the smooth muscle of arterioles is by means of potassium channels in their membranes, leading to hyperpolarization, relaxation and hence an increase in blood flow. This model predicts a linear increase in blood flow with increasing numbers of activated astrocytes, but a non-linear increase with increasing glutamate release.  相似文献   

13.
In order to elucidate the mechanisms of purinergic transmission of calcium (Ca2 + ) waves between microglial cells, we have employed micro-photolithographic methods to form discrete patterns of microglia that allow quantitative measurements of Ca2 +  wave propagation. Microglia were confined to lanes 20–100 wide and Ca2 +  waves propagated from a point of mechanical stimulation, with a diminution in amplitude, for about 120 . The number of cells participating in propagation also decreased over this distance. Ca2 +  waves could propagate across a cell-free lane from one microglia lane to another if this distance of separation was less than about 60 , indicating that propagation involved diffusion of a chemical transmitter. This transmitter was identified as ATP since all Ca2 +  wave propagation was blocked by the purinoceptor antagonist suramin, which blocks P2Y2 and P2Y12 at relatively low concentrations. Antibodies to P2Y12 showed these at very high density compared with P2Y2, indicating a role for P2Y12 receptors. These observations were quantitatively accounted for by a model in which the main determinants are the diffusion of ATP released from a stimulated microglial cell and differences in the dissociation constant of the purinoceptors on the microglial cells.  相似文献   

14.
Epidemic models have successfully included many aspects of the complex contact structure apparent in real-world populations. However, it is difficult to accommodate variations in the number of contacts, clustering coefficient and assortativity. Investigations of the relationship between these properties and epidemic behaviour have led to inconsistent conclusions and have not accounted for their interrelationship. In this study, simulation is used to estimate the impact of social network structure on the probability of an SIR (susceptible-infective-removed) epidemic occurring and, if it does, the final size. Increases in assortativity and clustering coefficient are associated with smaller epidemics and the impact is cumulative. Derived values of the basic reproduction ratio (R0) over networks with the highest property values are more than 20% lower than those derived from simulations with zero values of these network properties.  相似文献   

15.
We aimed to design and manufacture a novel low-cost polyimide microelectrode array (MEA) chip for visual prosthesis research and to evaluate its biological features. A microelectrode array was developed, based on Flexible Printed Circuit Board (FPC) technology which enables electrical stimulation of the cortex. In an in vitro experiment, rat visual cortex cells were co-cultured with the chip and examined using scanning electron microscopy. Trypan blue exclusion and methyl blue tetrazolium tests showed that cell viability and survival rates (90–98%) did not significantly differ between the co-cultured chip group and the control group. In an in vivo experiment HE/Nissl staining performed to investigate the possibility of brain tissue degeneration around implanted MEAs showed no negative effects of the chip on visual cortical cells after 1 month in situ. The good functional characteristics and biocomptability suggest that such a low-cost device could have widespread application, particularly in countries with a large blind population and limited financial resources  相似文献   

16.
Factors which have influenced the design of a large scale model for an analysis of the strain in three dimensions of the cement layer beneath the medial plateau of a knee prosthesis are discussed. Materials were selected to model the medial tibial plateau, underlying cement and bone for a typical prosthesis and a two dimensional finite element analysis was used to indicate where the strain gauges should be embedded in the model.  相似文献   

17.
The development of a transcutaneous, implantable, multichannel neural stimulator is described. This was originally dedicated to the stimulation of the auditory nerve profoundly deaf persons, but is sufficiently flexible in design and operation to be applicable to other areas of neural prosthetics. Control of both the amplitude and time of stimulation for up to fifteen independent channels is possible with a maximum stimulation rate of 1kHz. Particular attention is given to the design of the transcutaneous link stage which allows both power and data to be transferred to the implanted device using a compact coupling inductor configuration. All circuit timing is derived from a single clock in the external transmitter unit, resulting in stable operation with predictable stimulus output characteristics. The implantable device, realised using thick film hybrid techniques, employs CMOS logic extensively to reduce power consumption. One such device has been implanted in a profoundly deaf volunteer for a period exceeding two years and has continued to operate reliably in conjunction with the complete prosthesis system.  相似文献   

18.
The subscapular arterial tree as a source of microvascular arterial grafts   总被引:2,自引:0,他引:2  
The subscapular arterial tree may be used as a source of microvascular grafts to replace damaged or diseased portions of arteries, particularly in the hand and forearm. By studying cadaver dissections, it is possible to estimate the number of branches that may be found at different arterial segment lengths from the origin of the subscapular artery. Fifty-five preserved cadaver subscapular arterial trees were dissected, and the branching patterns were documented. Three major arterial branching patterns of the subscapular artery were observed with one, two, and three major branches to the serratus anterior in 60 percent, 29 percent, and 9 percent of the cases, respectively. The authors determined the number of 1-mm-diameter, 1-cm-long branches arising from each of six 3-cm regions of the arterial tree measured from the origin of the subscapular artery to the end of the longest terminal branch. The probability of finding at least one usable terminal branch that is at least 12.0 cm in length was found to be 98 percent. Typically, there are two to five useful branches at this distance. Such information may help surgeons fine tune their process of selecting an appropriate arterial donor site for a particular arterial defect and supports the use of the subscapular arterial tree as a donor site for microvascular arterial grafts.  相似文献   

19.
Surface electromyogram-controlled powered hand/wrist prostheses return partial upper-limb function to limb-absent persons. Typically, one degree of freedom (DoF) is controlled at a time, with mode switching between DoFs. Recent research has explored using large-channel EMG systems to provide simultaneous, independent and proportional (SIP) control of two joints—but such systems are not practical in current commercial prostheses. Thus, we investigated site selection of a minimum number of conventional EMG electrodes in an EMG-force task, targeting four sites for a two DoF controller. In a laboratory experiment with 10 able-bodied subjects and three limb-absent subjects, 16 electrodes were placed about the proximal forearm. Subjects produced 1-DoF and 2-DoF slowly force-varying contractions up to 30% maximum voluntary contraction (MVC). EMG standard deviation was related to forces via regularized regression. Backward stepwise selection was used to retain those progressively fewer electrodes that exhibited minimum error. For 1-DoF models using two retained electrodes (which mimics the current state of the art), subjects had average RMS errors of (depending on the DoF): 7.1–9.5% MVC for able-bodied and 13.7–17.1% MVC for limb-absent subjects. For 2-DoF models, subjects using four electrodes had errors on 1-DoF trials of 6.7–8.5% MVC for able-bodied and 11.9–14.0% MVC for limb-absent; and errors on 2-DoF trials of 9.9–11.2% MVC for able-bodied and 15.8–16.7% MVC for limb-absent subjects. For each model, retaining more electrodes did not statistically improve performance. The able-bodied results suggest that backward selection is a viable method for minimum error selection of as few as four electrode sites for these EMG-force tasks. Performance evaluation in a prosthesis control task is a necessary and logical next step for this site selection method.  相似文献   

20.
The dependence of the wave conductance in self-similar dichotomous models of intraorgan arterial vasculatures on the model parameters was studied. It was found that, with different sets of parameters, it is possible to simulate the suction effect induced by negative reflections of waves from arterial branchings and to model the resonance properties of arterial beds. It was shown that the choice of an adequate model for a given intraorgan arterial vasculature should be based on agreement between the biophysical characteristics of the model and the bed that characterize the propagation and reflection of pulse waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号