首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokines are small, secreted cytokine peptides that have the ability to recruit a wide range of immune cells to sites of infection and disease. A novel CXC chemokine was obtained from Japanese flounder Paralichthys olivaceus. This chemokine cDNA contains an open reading frame of 333 nucleotides encoding 111 amino acid residues containing four conserved cysteine residues. The gene is composed of four exons and three introns as are those of mammalian and fish CXC chemokines. Results of homology and phylogenetic analysis revealed that the Japanese flounder CXC chemokine is closest to CXCL13 subgroup. The gene was expressed in immune-related organs, including head kidney, trunk kidney, spleen and peripheral blood leukocytes (PBLs). Japanese flounder CXC chemokine gene expression was observed at 3 and 6h after induction by LPS, but not at 3 and 6h after induction by poly I:C. These results suggest that the Japanese flounder CXC chemokine is probably associated with inflammatory as well as homeostatic functions.  相似文献   

2.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

3.
Three novel CXC chemokines were identified in common carp (Cyprinus carpio L.) through homology cloning. Phylogenetic analyses show that one of the three CXC chemokines is an unambiguous orthologue of CXCL14, whereas both others are orthologues of CXCL12, and were named CXCL12a and CXCL12b. Percentages of amino acid identity between each of these carp chemokines and their human and mouse orthologues are markedly higher than those reported previously for other carp CXC chemokines, suggestive of involvement in vital processes, which have allowed for relatively few structural changes. Furthermore, all three novel carp CXC chemokines are expressed during early development, in contrast to established immune CXC chemokines. In noninfected adult carp, CXCL12b and CXCL14 are predominantly expressed in the brain. CXCL12a is highly expressed in kidney and anterior kidney, but its expression is still more abundant in brain than any other carp CXC chemokine. Clearly, these chemokines must play key roles in the patterning and maintenance of the (developing) vertebrate central nervous system.  相似文献   

4.
5.
A sequence encoding a CXC - type chemokine from rainbow trout was found to most resemble members of the CXCL9/CXCL10/CXCL11 sub-family. In mammals, all 3 chemokines are regulated by IFN-gamma and are chemotactic for activated T lymphocytes. The trout chemokine (gammaIP1), with a message of 787 nucleotides, contains 100 amino acids in a typical non-ELR CXC chemokine arrangement. A second sequence (gammaIP2), with 6 nucleotide differences in the coding region when compared to the first, was also identified although it is not known whether this is a second functional gene or a second allele. The gene is separated onto 4 exons, and the introns intervene in conserved positions according to the mammalian equivalents. The sequence encoded by the second exon shares the highest amino acid identity (37%) with CXCL10, with lower values of identity to other CXC chemokines (17-31%). Furthermore, phylogenetic analysis groups the trout chemokine with mammalian CXCL9, CXCL10 and CXCL11 peptides. Constitutive expression of gammaIP is seen in trout gill and low level expression in spleen, head kidney and liver. In RTS-11 cells, gammaIP expression can be induced with poly I:C, but not by LPS, suggesting virus-mediated regulation of gammaIP. Intraperitoneal injection of recombinant trout TNF-alpha caused elevation in gammaIP mRNA levels in trout head kidney.  相似文献   

6.
7.
CXC and CC chemokines are involved in numerous biological processes, and their function in situ may be significantly influenced by heterodimer formation, as was recently reported, for example, for CXC chemokines CXCL4/PF4 and CXCL8/IL8 that interact to form heterodimers that modulate chemotactic and cell proliferation activities. Here we used molecular dynamics simulations to determine relative association free energies (overall average and per residue) for homo- and heterodimer pairs of CXC (CXCL4/PF4, CXCL8/IL8, CXCL1/Gro-alpha, and CXCL7/NAP-2) and CC (CCL5/RANTES, CCL2/MCP-1, and CCL8/MCP-2) chemokines. Even though structural homology among monomer folds of all CXC and CC chemokines permits heterodimer assembly, our calculated association free energies depend upon the particular pair of chemokines in terms of the net electrostatic and nonelectrostatic forces involved, as well as (for CC/CXC mixed chemokines) the selection of dimer type (CC or CXC). These relative free energies indicate that association of some pairs of chemokines is more favorable than others. Our approach is validated by correlation of calculated and experimentally determined free energies. Results are discussed in terms of CXC and CC chemokine function and have significant biological implications.  相似文献   

8.
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.  相似文献   

9.
Chronic or recurrent inflammation plays a role in the development of many types of cancer including prostate cancer. CXCL10 (interferon-gamma inducible protein-10, IP-10) is a small secretory protein of 8.7 kDa. Recently, it has been shown that normal prostate epithelial (PZ-HPV-7) cells produce lower amounts of angiogenic CXC chemokines (GRO-alpha, IL-8) and higher amounts of angiostatic chemokines (CXCL10, CXCL11) as compared to prostate cancer cells (CA-HPV-10 and PC-3). Accordingly, we studied the effects of overexpression of CXCL10 in human prostate cancer LNCaP cells. LNCaP cells were transiently transfected with CXCL10 cDNA in pIRES2-EGFP vector. CXCL10, CXCR3, PSA and G3PDH mRNA levels were determined by semi-quantitative conventional and quantitative real-time RT-PCR and fluorescence-activated cell sorting (FACS). The expression of CXCL10 was markedly enhanced in the transfected cells at mRNA and protein levels in the cells. Overexpression of CXCL10 inhibited cell proliferation of the transfected cells by 30%-40% in serum-limited medium (1% FCS in RPMI1640 medium) and decreased PSA production. CXCR3 expression was significantly induced by the overexpression of CXCL10 as determined by RT-PCR and FACS. These results indicated that CXCL10 inhibited LNCaP cell proliferation and decreased PSA production by up-regulation of CXCR3 receptor. CXCL10 may be potentially useful in the treatment of prostate cancer.  相似文献   

10.
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype.  相似文献   

11.
Chemokines are a large family of chemotactic cytokines playing crucial roles in the innate immune response. In the present study, we report the cloning of a CXC chemokine gene resembling the closely related CXCL9/CXCL10/CXCL11 from the miiuy croaker Miichthys miiuy (MimiCXC). Both 5'-RACE and 3'-RACE were carried out in order to obtain the complete cDNA, which consists of a 73 bp 5'-UTR, a 369 bp open reading frame encoding 122 amino acids and a 715 bp 3'-UTR. The deduced MimiCXC contains a 19-aa signal peptide and a 103-aa mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CXC chemokines. It shares 4.8%-65.6% sequence identities to mammalian CXC chemokines and the highest sequence identity of 65.6% is between MimiCXC and CXCL10 chemokine. Three exons and two introns were identified in MimiCXC gene. The MimiCXC gene was constitutively expressed in all tissues tested, although at different levels. Upon induction with Vibrio anguillarum, MimiCXC gene expression was up-regulated in kidney and spleen, however, down-regulated in liver. These results indicate that MimiCXC may be involved in immune responses as well as homeostatic processes in miiuy croaker.  相似文献   

12.
We identify matrix metalloproteinase (MMP)-8, the polymorphonuclear (PMN) leukocyte collagenase, as a critical mediator initiating lipopolysaccharide (LPS)-responsiveness in vivo. PMN infiltration towards LPS is abrogated in Mmp8-null mice. MMP-8 cleaves LPS-induced CXC chemokine (LIX) at Ser(4)-Val(5) and Lys(79)-Arg(80). LIX bioactivity is increased upon N-terminal cleavage, enhancing intracellular calcium mobilization and chemotaxis upon binding its cognate receptor, CXCR2. As there is no difference in PMN chemotaxis in Mmp8-null mice compared with wild-type mice towards synthetic analogues of MMP-8-cleaved LIX, MMP-8 is not essential for extravasation or cell migration in collagenous matrices in vivo. However, with biochemical redundancy between MMPs 1, 2, 9, and 13, which also cleave LIX at position 4 approximately 5, it was surprising to observe such a markedly reduced PMN infiltration towards LPS and LIX in Mmp8-/- mice. This lack of physiological redundancy in vivo identifies MMP-8 as a key mediator in the regulation of innate immunity. Comparable results were found with CXCL8/IL-8 and CXCL5/ENA-78, the human orthologues of LIX. MMP-8 cleaves CXCL8 at Arg(5)-Ser(6) and at Val(7)-Leu(8) in CXCL5 to activate respective chemokines. Hence, rather than collagen, these PMN chemoattractants are important MMP-8 substrates in vivo; PMN-derived MMP-8 cleaves and activates LIX to execute an in cis PMN-controlled feed-forward mechanism to orchestrate the initial inflammatory response and promote LPS responsiveness in tissue.  相似文献   

13.
CXCL14 is a member of the CXC chemokine family. CXCL14 possesses chemoattractive activity for activated macrophages, immature dendritic cells and natural killer cells. CXCL14-deficient mice do not exhibit clear immune system abnormalities, suggesting that the function of CXCL14 can be compensated for by other chemokines. However, CXCL14 does appear to have unique biological roles. It suppresses the in vivo growth of lung and head-and-neck carcinoma cells, whereas the invasiveness of breast and prostate cancer cells appears to be promoted by CXCL14. Moreover, recent evidence revealed that CXCL14 participates in glucose metabolism, feeding behaviour-associated neuronal circuits, and anti-microbial defense. Based on the expression patterns of CXCL14 and CXCL12 during embryonic development and in the perinatal brain in mice, the functions of these two chemokines may be opposite or interactive. Although CXCL14 receptors have not yet been identified, the intracellular activity of CXCL14 in breast cancer cells suggests that the CXCL14 receptor(s) and signal transduction pathway(s) may be different from those of conventional CXC-type chemokines.  相似文献   

14.
Novel chicken CXC and CC chemokines   总被引:4,自引:0,他引:4  
Upon stimulation with lipopolysaccharide (LPS) the chicken macrophage cell line HD-11 secretes factors with cytokine activity. To characterize these molecules, representational difference analysis with RNA of LPS-induced and uninduced HD-11 cells was performed. Two cDNA clones were isolated that code for polypeptides with structural features of chemokines. cDNA K60 codes for a novel CXC chemokine of 104 residues including a putative signal peptide of 20 amino acids at the N-terminus. It is 67% identical to the previously cloned chicken chemokine 9E3/CEF4. K60 exhibits a similar degree of sequence identity to human interleukin 8 and other related CXC chemokines (about 50%), rendering straight-forward predictions of its biological properties difficult. cDNA K203 codes for a novel CC chemokine of 89 amino acids including a putative N-terminal signal peptide of 21 residues. It is 43% identical to a previously characterized chicken protein with homology to mammalian macrophage inflammatory protein 1beta (MIP-1beta). K203 exhibits about 50% sequence identity to human MIP-1beta and other related CC chemokines.  相似文献   

15.
A CXCL13-like chemokine cDNA was isolated from large yellow croaker (Pseudosciaena crocea) by expressed sequence tag (EST) analysis (LycCXCL13). The full-length cDNA of LycCXCL13 is 796 nucleotides (nt) encoding a protein of 97 amino acids (aa), with a putative molecular weight of 10.7 kDa. The deduced LycCXCL13 contains a 24-aa signal peptide and a 73-aa mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CXC chemokines (C25, C27, C52 and C68). It shares 35, 36 and 39% aa sequence identities to green puffer CXCL13-like, Atlantic salmon CXCL13 and Japanese flounder CXCL13 chemokines, and 24–29% identities to CXCL13 chemokines in mammals, respectively. Phylogenetic analysis showed that LycCXCL13 is more closely related to the CXCL13 subgroup than to any other CXC chemokine subgroups. LycCXCL13 gene was constitutively expressed in all tissues examined, except for intestine. Upon induction with poly(I:C) or inactivated trivalent bacterial vaccine, LycCXCL13 gene expression was significantly up-regulated in spleen, head kidney, heart and gills at 24 h post-injection. Real-time PCR results showed that LycCXCL13 gene expression reached peak level in spleen and head kidney at 12 h after induction by poly(I:C), while its expression increased to the highest level in head kidney at 24 h or in spleen at 48 h by bacterial vaccine. Recombinant LycCXCL13 protein produced in E. coli BL21 exhibited obvious chemotaxis to the peripheral blood leucocytes (PBLs) from large yellow croaker. These results suggest that LycCXCL13 may be involved in inflammatory responses as well as homeostatic processes in large yellow croaker.  相似文献   

16.
The Duffy Ag expressed on RBCs, capillaries, and postcapillary venular endothelial cells binds selective CXC and CC chemokines with high affinity. Cells transfected with the Duffy Ag internalize but do not degrade chemokine ligand. It has been proposed that Duffy Ag transports chemokines across the endothelium. We hypothesized that Duffy Ag participates in the movement of chemokines across the endothelium and, by doing so, modifies neutrophil transmigration. We found that the Duffy Ag transfected into human endothelial cells facilitates movement of the radiolabeled CXC chemokine, growth related oncogene-alpha/CXC chemokine ligand 1 (GRO-alpha/CXCL1), across an endothelial monolayer. In addition, neutrophil migration toward GRO-alpha/CXCL1 and IL-8 (IL-8/CXCL8) was enhanced across an endothelial monolayer expressing the Duffy Ag. Furthermore, GRO-alpha/CXCL1 stimulation of endothelial cells expressing the Duffy Ag did not affect gene expression by oligonucleotide microarray analysis. These in vitro observations are supported by the finding that IL-8/CXCL8-driven neutrophil recruitment into the lungs was markedly attenuated in transgenic mice lacking the Duffy Ag. We conclude that Duffy Ag has a role in enhancing leukocyte recruitment to sites of inflammation by facilitating movement of chemokines across the endothelium.  相似文献   

17.
Cancer is a life-threatening disease world-wide and colorectal cancer is the second common cause of cancer mortality. The interaction between tumor cells and stromal cells plays a crucial role in tumor initiation and progression and is partially mediated by chemokines. Chemokines predominantly participate in the chemoattraction of leukocytes to inflammatory sites. Nowadays, it is clear that CXC chemokines and their receptors (CXCR) may also modulate tumor behavior by several important mechanisms: regulation of angiogenesis, activation of a tumor-specific immune response by attracting leukocytes, stimulation of tumor cell proliferation and metastasis. Here, we review the expression and complex roles of CXC chemokines (CXCL1 to CXCL16) and their receptors (CXCR1 to CXCR6) in colorectal cancer. Overall, increased expression levels of CXC chemokines correlate with poor prognosis.  相似文献   

18.
Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions.  相似文献   

19.
Recent reports highlighted the chemotactic activities of antimicrobial peptide defensins whose structure, charge, and size resemble chemokines. By assaying representative members of the four known families of chemokines we explored the obverse: whether some chemokines exert antimicrobial activity. In a radial diffusion assay, only recombinant monokine induced by IFN-gamma (MIG/CXCL9), IFN-gamma-inducible protein of 10 kDa (IP-10/CXCL10), and IFN-inducible T cell alpha chemoattractant (I-TAC/CXCL11), members of the IFN-gamma-inducible tripeptide motif Glu-Leu-Arg (ELR)(-) CXC chemokines, were antimicrobial against Escherichia coli and Listeria monocytogenes. Similar to human defensins, antimicrobial activities of the chemokines were inhibited by 50 and 100 mM NaCl. The concentration of MIG/CXCL9 and IP-10/CXCL10 released from IFN-gamma-stimulated PBMC in 24 h were, respectively, 35- and 28-fold higher than from unstimulated cells. Additionally, the amounts of chemokines released per monocyte suggest that, in tissues with mononuclear cell infiltration, IFN-gamma-inducible chemokines may reach concentrations necessary for microbicidal activity. IFN-gamma-inducible chemokines may directly inactivate microbes before attracting other host defense cells to the area of infection.  相似文献   

20.
Baird AM  Gray SG  O'Byrne KJ 《PloS one》2011,6(1):e14593

Background

Angiogenesis may play a role in the pathogenesis of Non-Small Cell Lung cancer (NSCLC). The CXC (ELR+) chemokine family are powerful promoters of the angiogenic response.

Methods

The expression of the CXC (ELR+) family members (CXCL1-3/GROα-γ, CXCL8/IL-8, CXCR1/2) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of these chemokines was examined in normal bronchial epithelial and NSCLC cell lines.

Results

Overall, expression of the chemokine ligands (CXCL1, 2, 8) and their receptors (CXCR1/2) were down regulated in tumour samples compared with normal, with the exception of CXCL3. CXCL8 and CXCR1/2 were found to be epigenetically regulated by histone post-translational modifications. Recombinant CXCL8 did not stimulate cell growth in either a normal bronchial epithelial or a squamous carcinoma cell line (SKMES-1). However, an increase was observed at 72 hours post treatment in an adenocarcinoma cell line.

Conclusions

CXC (ELR+) chemokines are dysregulated in NSCLC. The balance of these chemokines may be critical in the tumour microenvironment and requires further elucidation. It remains to be seen if epigenetic targeting of these pathways is a viable therapeutic option in lung cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号