首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundAlthough recent advances in circulating DNA analysis allow the prediction of tumor genomes by noninvasive means, some challenges remain, which limit the widespread introduction of cfDNA in cancer diagnostics. We analyzed the status of the two best characterized colorectal cancer (CRC) genetic and epigenetic alterations in a cohort of CRC patients, and then compared the degree to which the two patterns move from tissue to plasma in order to improve our understanding of biology modulating the concordance between tissues and plasma methylation and mutation profiles.MethodsPlasma and tumor tissues were collected from 85 patients (69±14 years, 56 males). KRAS and SEPT9 status was assessed by allele refractory mutation system quantitative PCR and quantitative methylation-specific PCR, respectively. Six of the most common point mutations at codon 12 and 13 were investigated for KRAS analysis.ResultsKRAS mutations and SEPT9 promoter methylation were present in 34% (29/85) and in 82% (70/85) of primary tumor tissue samples. Both genetic and epigenetic analyses of cfDNA revealed a high overall concordance and specificity compared with tumor-tissue analyses. Patients presenting with both genetic and epigenetic alterations in tissue specimens (31.8%, 27/85) were considered for further analyses. The median methylation rates in tumour tissues and plasma samples were 64.5% (12.2–99.8%) and 14.5% (0–45.5%), respectively. The median KRAS mutation load (for matched mutations) was 33.6% (1.8–86.3%) in tissues and 2.9% (0–17.3) in plasma samples. The plasma/tissue (p/t) ratio of SEPT9 methylation rate was significantly higher than the p/t ratio of KRAS mutation load, especially in early stage cancers (p=0.0108).ConclusionThe results of this study show a discrepant rate of epigenetic vs. genetic alterations moving from tissue to plasma. Many factors could affect mutation cfDNA analysis, including both presence of tumor clonal heterogeneity and strict compartmentalization of KRAS mutation profile. The present study highlights the importance of considering the nature of the alteration when analyzing tumor-derived cfDNA.  相似文献   

2.

Background

Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies.

Principal Findings

The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes.

Conclusions

Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology.  相似文献   

3.

Background

Colon cancer (CRC) development often includes chromosomal instability (CIN) leading to amplifications and deletions of large DNA segments. Epidemiological, clinical, and cytogenetic studies showed that there are considerable differences between CRC tumors from African Americans (AAs) and Caucasian patients. In this study, we determined genomic copy number aberrations in sporadic CRC tumors from AAs, in order to investigate possible explanations for the observed disparities.

Methodology/Principal Findings

We applied genome-wide array comparative genome hybridization (aCGH) using a 105k chip to identify copy number aberrations in samples from 15 AAs. In addition, we did a population comparative analysis with aCGH data in Caucasians as well as with a widely publicized list of colon cancer genes (CAN genes). There was an average of 20 aberrations per patient with more amplifications than deletions. Analysis of DNA copy number of frequently altered chromosomes revealed that deletions occurred primarily in chromosomes 4, 8 and 18. Chromosomal duplications occurred in more than 50% of cases on chromosomes 7, 8, 13, 20 and X. The CIN profile showed some differences when compared to Caucasian alterations.

Conclusions/Significance

Chromosome X amplification in male patients and chromosomes 4, 8 and 18 deletions were prominent aberrations in AAs. Some CAN genes were altered at high frequencies in AAs with EXOC4, EPHB6, GNAS, MLL3 and TBX22 as the most frequently deleted genes and HAPLN1, ADAM29, SMAD2 and SMAD4 as the most frequently amplified genes. The observed CIN may play a distinctive role in CRC in AAs.  相似文献   

4.
5.
6.
7.
Genome wide association studies (GWAS) have identified low penetrance and high frequency single nucleotide polymorphisms (SNPs) that contribute to genetic susceptibility of breast cancer. The SNPs at 16q12, close to the TOX3 and CASC16 genes, represent one of the susceptibility loci identified by GWAS, showing strong evidence for breast cancer association across various populations. To examine molecular mechanisms of TOX3 regulation in breast cancer, we investigated both genetic and epigenetic factors using cell lines and datasets derived from primary breast tumors available through The Cancer Genome Atlas (TCGA). TOX3 expression is highly up-regulated in luminal subtype tumors compared to normal breast tissues or basal-like tumors. Expression quantitative trait loci (eQTL) analyses revealed significant associations of rs3803662 and rs4784227 genotypes with TOX3 expression in breast tumors. Bisulfite sequencing of four CpG islands in the TOX3 promoter showed a clear difference between luminal and basal-like cancer cell lines. 5-Aza-2’-deoxycytidine treatment of a basal-like cancer cell line increased expression of TOX3. TCGA dataset verified significantly lower levels of methylation of the promoter in luminal breast tumors with an inverse correlation between methylation and expression of TOX3. Methylation QTL (mQTL) analyses showed a weak or no correlation of rs3803662 or rs4784227 with TOX3 promoter methylation in breast tumors, indicating an independent relationship between the genetic and epigenetic events. These data suggest a complex system of TOX3 regulation in breast tumors, driven by germline variants and somatic epigenetic modifications in a subtype specific manner.  相似文献   

8.
遗传不稳定性与人类肿瘤   总被引:2,自引:0,他引:2  
人类在进化历程中,突变可自然发生。保守的估计,自人类与黑猩猩区分的那一刻起,人类每代每个二倍体基因组平均发生4.2个氨基酸的突变(aminoacidaltering)。虽然这些突变至少有38%为自然选择所去除,但每代二倍体细胞中每个基因组仍可保留1.6个新突变[1]。已经证实,肿瘤细胞中存在许多生长调控基因(growthcontrollinggene)的突变。这些突变可分为4类:①DNA序列改变;②染色体数改变;③染色体易位;④基因扩增。这4种突变通常发生于一定类型的肿瘤,在正常细胞中难以见到。但是肿瘤中突变的存在并不说明…  相似文献   

9.
Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC.  相似文献   

10.
11.
12.
The completion of the Human Genome Project provided a reference sequence to which researchers could compare sequences from individual patients in the hope of identifying disease-causing mutations. However, this still necessitated candidate gene testing or a very limited screen of multiple genes using Sanger sequencing. With the advent of high-throughput Sanger sequencing, it became possible to screen hundreds of patients for alterations in hundreds of genes. This process was time consuming and limited to a few locations/institutions that had the space to house tens of sequencing equipment. The development of next generation sequencing revolutionized the process. It is now feasible to sequence the entire exome of multiple individuals in about 10 days. However, this meant that a massive amount of data needed to be filtered to identify the relevant alteration. This is presently the rate-limiting step in providing a convincing association between a genetic alteration and a human disorder.  相似文献   

13.
The review considers the epigenetic defects and their diagnostics in several hereditary disorders and tumors. Aberrant methylation of the promoter or regulatory region of a gene results in its functional inactivation, which is phenotypically similar to structural deletion. Screening tests were developed for Prader–Willi, Angelman, Wiedemann–Beckwith, and Martin–Bell syndromes and mental retardation FRAXE. The tests are based on allele methylation analysis by methylation-specific or methylation-sensitive PCR. Carcinogenesis-associated genes (RB1, CDKN2A, ARF14, HIC1, CDH1, etc.) are often methylated in tumors. Tumors differ in methylation frequencies, allowing differential diagnostics. Aberrant methylation of tumor suppressor genes occurs in early carcinogenesis, and its detection may be employed in presymptomatic diagnostics of tumors.  相似文献   

14.
15.
16.
DNA与组蛋白上的共价标记如何参与癌细胞的产生与扩散,这项研究同时带来了新的治疗策略。  相似文献   

17.
Mazurenko  N. N.  Beliakov  I. S.  Bliyev  A. Yu.  Guo  Z.  Hu  X.  Vinokourova  S. V.  Bidzhieva  B. A.  Pavlova  L. S.  Ponten  J.  Kisseljov  F. L. 《Molecular Biology》2003,37(3):404-411
Loss of heterozygosity (LOH) analysis on chromosome 6 was performed to define the genetic changes that occur in the development of squamous cell cervical cancer (SCC). Detailed analysis with 28 microsatellite markers revealed several loci with high frequency of deletions at the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16–q21, 6q23–q24, 6q25, 6q27) arms of chromosome 6. Examination of microdissected 37 SCC and 22 cervical intraepithelial neoplasias (CIN) revealed allelic deletions in the HLA class I–III region (6p22–p21.3) and at subtelomeric locus 6p25-ter in more than 40% of CIN. By a combination of LOH and microdissection of multiple samples from the same tumor sections, we studied the intratumoral genetic heterogeneity of SCC, and identified clonal and subclonal allelic deletions. Half of SCC had clonal allelic deletion at D6S273, which is localized in intron of Ly6G6D (MEGT1) gene mapped in the HLA class III region. The LOH frequency at 6q in CIN cases did not exceed 20%. Allelic deletions at two loci, 6q14 and 6q16–q21, were for the first time associated with invasion and metastasis in SCC.  相似文献   

18.
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号