首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growth factors and proto-oncogenes play an important role in the regulation of embryonic growth and differentiation as well as in tumorigenesis. Insulin and insulin-like growth factor I (IGF I) are secreted by embryonic tissues during the prepancreatic stage of mouse development. Measureable amounts of these factors were found in 8- to 12-day-old embryos. Embryonic cells derived from 8- to 10-day-old embryos secrete insulin and IGF I in serum-free medium. Relatively high levels of c-myc, c-fos and c-H-ras oncoproteins were also detected in 8- to 12-day-old embryos. Insulin and IGF I, when added to the culture of embryonic cells, stimulate their proliferation. Similar results were obtained in some animal or human tumors. Murine myeloid leukemias and melanoma B 16 secrete a substance immunologically cross reactive with insulin (SICRI) both in vivo and in serum-free media. In culture, the DNA synthesis rate per leukemic or melanoma cell is proportional to cell density and is reduced by antiinsulin serum in case of leukemic cells. Human hemangiosarcoma secrete IGF I, which also plays a role as an autocrine factor. Purified IGF I efficiently induce c-myc and c-fos mRNA, which is among the earliest events following growth factor stimulation, leading to mitosis. These results lead us to the conclusion that IGF I and insulin together with oncoproteins stimulate the growth of embryonic and tumor cells, which is indirect evidence for a paracrine (or autocrine) type of action.  相似文献   

2.
Somatomedins/insulin-like growth factors (Sm/IGFs) are considered to have important roles in regulating fetal growth; however, because of limited quantities of tissue, few studies have been performed on their effects on embryonic growth. To assess a potential role for these factors, we evaluated mouse embryonic tissues for the presence of Sm/IGF and insulin receptors and Sm/IGF-binding proteins by chemical affinity labelling. In addition, we measured extractable Sm-C/IGF-I radioimmunoactivity in mouse embryonic tissues. Finally, we compared these data with those from the embryonal carcinoma cell line, PC13. All embryos from day 9 (3-4 somites) to day 12 (45 somites) possessed both Sm-C/IGF-I and IGF-II receptors in apparent greater abundance than insulin receptors. The visceral yolk sac appeared to have proportionally more insulin receptors than the corresponding embryonic tissue. Extracts from the embryos contained immunoreactive Sm-C/IGF-I and binding proteins of 30-45 X 10(3) Mr. PC13 cells possessed all three receptors and the apparent abundance of the insulin and IGF-II receptors was reduced after differentiation was induced with retinoic acid. PC13 cells released both immunoreactive Sm-C/IGF-I- and Sm-C/IGF-I-binding proteins into their medium. When differentiated, the binding proteins resembled the native ones extracted from the intact embryos. The presence of Sm/IGF activity, receptors and binding proteins in early embryogenesis suggests a role for these factors in embryonic growth. The PC13 cell line appears to only partially reflect normal development.  相似文献   

3.
Recent studies of early development in a number of invertebrate and vertebrate species have suggested that growth factors and their receptors may play important roles in differentiation as well as cell proliferation. In the mouse embryo, the expression of the receptors for insulin and insulin-like growth factors I and II (IGF-I and -II) are temporally regulated. The ontogeny of receptor and ligand expression within the insulin and IGF gene family suggests that the very earliest stages of mammalian embryogenesis may be subject to regulation by autocrine and paracrine factors from maternal and embryonic sources.  相似文献   

4.
Insulin-like growth factor (IGF) I (greater than or equal to 10(-10)M, insulin-like growth factor II (greater than or equal to 10(-9) M), insulin (greater than or equal to 10(-9) M, and epidermal growth factor (EGF, greater than or equal to 10(-11) M) caused rapid membrane ruffling in KB cells. The morphological change was observed within 1 min after the addition of these growth factors and was accompanied by microfilament reorganization, but not by microtubule reorganization. IGF-I, IGF-II, and insulin induced morphologically very similar or identical membrane ruffles with the order of potency IGF-I greater than IGF-II greater than insulin, whereas EGF-induced membrane ruffles were morphologically different. KB cells possessed EGF receptors, type I IGF receptors, and insulin receptors, but few or no type II IGF receptors. Monoclonal antibody against type I IGF receptors, which completely inhibited the binding of 125I-IGF-I to the cells but did not inhibit the binding of 125I-insulin, caused marked inhibition of IGF-I (10(-8) M)-stimulated membrane ruffling. IGF-II (10(-8) M)-stimulated membrane ruffling was partially inhibited in the presence of this antibody, but insulin (10(-7) M)-stimulated membrane ruffling was only slightly inhibited. In contrast, monoclonal antibody against insulin receptors blocked insulin (10(-7) M) stimulation, but not IGF-I (10(-8) M) stimulation, of membrane ruffling. Thus, this study provides evidence that IGF-I and insulin act mostly through their own (homologous) receptors and that IGF-II acts by cross-reacting with both type I IGF and insulin (heterologous) receptors in causing rapid alterations in cytoskeletal structure.  相似文献   

5.
Cells prepared from the body walls of chicken embryos were plated in the absence of serum. Insulin-like growth factors (IGFs) barely stimulated cell replication, but preferentially enhanced the differentiation of muscle cells. Myoblast fusion was favoured in the presence of IGF (or insulin). Concomitantly, acetylcholinesterase activity increased. IGF I and IGF II were equipotent and active in low physiological concentrations, in contrast to insulin, which was known for a long time to exert such effects at pharmacological concentrations.  相似文献   

6.
We have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [125I]IGF I and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study we used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyse whether changes of insulin and IGF I binding are correlated with changes in growth rate and differentiation state of the cells. We show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IGF-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age.  相似文献   

7.
Insulin-like growth factors (IGF) or somatomedins (SM) have been classically defined as promoting the actions of growth hormone in skeletal growth. IGF is divided into two groups, IGF-I and II, and are presumed to act via IGF type I (higher affinity for IGF-I and II and very low affinity for insulin) and II (higher affinity for IGF-II than I and no affinity for insulin) receptors, respectively. Recently, a switchover role of IGF-II to I during fetal to adult growth has been suggested. We have investigated the possible transitional role of IGF-II to I in a developing mouse embryonic limb bud organ culture model. In this in vitro system, limb bud develops from the blastoma stage to a well-differentiated cartilage tissue. Both IGF type I and II receptors were found to be present in limb buds at all stages of differentiation. Type I receptor decreased with differentiation while Type II receptor increased. The effect of IGF-I on [3H]thymidine and [35S]sulfate uptake by the tissue increased with differentiation while the effect of IGF-II on [3H]thymidine uptake of the undifferentiated tissue was abolished with differentiation of the tissue. The increase of the IGF-I response with decreased type I receptor may reflect an altered receptor sensitivity (occupancy) during differentiation. The decrease of the IGF-II response with increased type II receptor with differentiation may on the other hand suggest that IGF-II in differentiated tissue no longer acts as a classical growth factor. These results tend to support the hypothesis of the switchover role of IGF-I and II during fetal and adult growth, however, confirmation of the precise role of IGF-I and II in biological growth may have to wait until further studies clarifying the significance of the increased IGF type II receptor in differentiated tissue are made.  相似文献   

8.
The insulin-like growth factors I and II are single chain polypeptides homologous to proinsulin. IGF I and IGF II contribute to cell regulation and stimulate protein synthesis via signaling through type I receptors which are homologous to insulin receptors and activate phosphorylation cascades. IGFs enhance the proliferation of chondocytes and the proliferation of their collagen and proteoglycan matrix; IGFs stimulate longitudinal (endochondral) bone growth. Throughout life, IGFs are constitutvely expressed ubiquitous factors which help to maintain the survival of differentiated cells, Increased expression is found during growth and tissue repair, Six specific binding proteins, IGFBP 1-6, allow additional tissue compartment specific control of IGF activity; IGFBP production favours storage and IGFBP cleavage leads to activation.  相似文献   

9.
10.
11.
Estrogen sensitizes the MCF-7 estrogen-responsive breast cancer cell line to the mitogenic effect of insulin and the insulin-like growth factors (IGFs). This sensitization is specific for estrogen and occurs at physiological concentrations of estradiol. Dose-response experiments with insulin, IGF-I, and IGF-II suggested that the sensitization is mediated through the type I IGF receptor. Binding experiments with 125I-IGF-I and hybridization of a type I IGF receptor probe to RNA showed that the levels of the type I IGF receptor and its mRNA are increased 7- and 6.5-fold, respectively, by estradiol. IGF-I and estradiol had similar synergistic effects on other estrogen-responsive breast cancer cell lines, but IGF-I alone increased the proliferation of the MDA MB-231 cell line which is not responsive to estrogens. These experiments suggest that an important mechanism by which estrogens stimulate the proliferation of hormone-dependent breast cancer cells involves sensitization to the proliferative effects of IGFs and that this may involve regulation of the type I IGF receptor.  相似文献   

12.
Paracrinology of growth regulation   总被引:1,自引:0,他引:1  
Embryonic and fetal growth is dependent on genetic factors and epigenetic factors such as peptide growth factors. We describe here the interactions of several peptide growth factors during the growth and function of two cell types, growth plate chondrocytes from the ovine fetus and astroglial cells from the newborn rat cerebral cortex. Isolated chondrocytes released two endogenous growth factors, basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF II). Although the latter was released in greater abundance, as detected by radioimmunoassay, exogenous bFGF was more than a thousand fold more active as a mitogen. Insulin was also able to increase chondrocyte replication at physiological concentrations, and bFGF, insulin and IGFs were additive in their effects on DNA and protein synthesis. Transforming growth factor beta (TGF beta), which is abundant in bone, had little effect on chondrocyte DNA or total protein synthesis alone, but blocked the stimulatory actions of insulin and IGFs on these parameters. However, TGF beta when alone or in combination caused an increase in the collagen: non collagenous protein ratio of new proteins synthesized by chondrocytes. Adult rat brain is a rich source of IGF II, and both IGF I and II are present during neurogenesis and gliagenesis in the fetal and neonatal rat respectively. We have cultured astroglial cells isolated from neonatal rat cerebral cortex to examine the production and interaction of peptide growth factors during their growth. Isolated astroglial cells contained mRNAs encoding both IGF I and II but abundance was not regulated by other hormones or growth factors. Using affinity cross-linking we found that cultured cells also released two species of IGF binding protein (IGF-BP) of 33 kDa and 38 kDa. Northern blot analysis using homologous cDNA probes showed that astroglial cells expressed IGF-BP2 and BP3, but little BP1. Both IGF I and II were mitogenic for astroglial cells, as was insulin at physiologic concentrations. Exogenous IGF-BP2 was able to modulate the mitogenic actions of exogenous IGF I. These two very different cell models show many similarities of endogenous growth control. Both release IGFs and IGF-BPs which regulate mitogenic rate. In addition, in both insulin functions as a growth factor at physiologic concentrations. These findings suggest common principles governing embryonic and fetal growth and development. Studies have shown that fetal and neonatal growth is independent of regulation by classic hormones (e.g. growth hormones) synthesized by the mother or the fetus. It is believed that embryonic and fetal growth is controlled by two major mechanisms, namely, (i) the genetic factors as determined by the embryonic and fetal genome, and (ii) the epigenetic and environmental factors that alter the expression of the embryonic or fetal genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Human T cells activated with mitogens, antigens, or antibodies to the T-cell receptor complex acquire a cascade of new receptors, including the receptors for interleukin-2, transferrin, and insulin. We investigated whether receptors for insulin-like growth factors (IGF) also were expressed on activated T cells. Based on competitive binding studies, immunoprecipitation of labeled cell surface receptors and blocking of radiolabeled peptide binding by a specific monoclonal antibody (alpha IR-3) to the type I IGF receptor, as well as affinity crosslinking of radiolabeled peptides to their receptors, we concluded that both type I and type II IGF receptors are expressed on activated T cells. A specific binding site for IGF-II also was observed on the type I IGF receptor which was not inhibited by alpha IR-3. Receptors for IGF were more numerous on activated T cells than on resting T cells, and their peak expression appeared by the peak of DNA synthesis. Thus, human activated T cells were shown to express both type I and II IGF receptors which could potentially play a role in the regulation of T-cell proliferation, differentiation, and function.  相似文献   

14.
Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.  相似文献   

15.
The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identities of the insulin and IGF I receptor beta-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the beta-subunit of the insulin receptor correlated with occupancy of the beta-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the beta-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the beta-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.  相似文献   

16.
 间歇性小剂量地给予甲状旁腺素 (parathyroid hormone,PTH)可促进成骨 .胰岛素样生长因子 - I(insulin- like growth factor- I,IGF- I)由成骨细胞所产生并贮存于骨基质中 ,可促进成骨细胞的增殖分化 .为进一步了解向钙性激素和骨源性生长因子对骨生长的影响 ,利用成骨样细胞 ROS1 7/ 2 .8进行体外实验 ,观察了 PTH和 IGF- I这两种在骨生长和代谢中有重要作用的激素和因子相互作用的效果 ,并对其相互作用机制作出初步探讨 .结果显示 :联合使用 IGF- I及 PTH(间歇性给药 )时 ,(1 ) SRB(sodium rhodamine B,SRB)染色显示经 PTH(1 0 -9mol/ L,间歇给药 )和 IGF- I(1 0 -9mol/ L)联合处理的细胞 ,其数目明显增加 ,且明显高于单独处理组 ;(2 ) 3H- Td R参入增加 ,也明显高于单独处理组 ;(3)与增殖相关的原癌基因 (c- fos,c- jun,c- ki- ras)的表达增强 ,明显高于单独处理组 ;(4)骨钙素 (osteocalcin)基因 m RNA表达增强 ,明显高于单独处理组 ;(5) IGF- I(1 0 -8mol/L,1 0 -9mol/ L)可使 PTH受体基因 m RNA表达增强 .这些结果提示 PTH和 IGF- I在成骨样细胞ROS 1 7/ 2 .8增殖分化中具有协同作用 ,原癌基因的表达增强可能是其作用的一个环节 .此外 ,IGF- I可能通过增强 PTH受体表达 ,使细胞对 PTH的反应性增强  相似文献   

17.
Previously, we reported that pancreatic acini have specific receptors for the insulin-like growth factors (IGF) I and II. We now report that the binding of 125I-labeled IGF II to mouse pancreatic acini is maximally increased by 100 nM insulin (51%) and is maximally reduced by 10 nM cholecystokinin octapeptide (CCK8) (34%), but is not affected by other regulatory peptides such as somatostatin or glucagon. Since many polypeptide hormones are internalized, we determined whether this regulation of IGF II binding occurred via a change in internalization. Acid washing or trypsinization has been shown to remove surface-bound hormone while the acid- or trypsin-resistant radioactivity represents internalized radioligand. Insulin increased and CCK8 decreased the internalization of IGF II as determined by these techniques. Studies of IGF II binding to acini at low temperature (15 degrees C) and binding to particulate fractions from acini were also consistent with the effect of insulin to increase and CCK8 to decrease the internalization of IGF II. When insulin and CCK8 were added together, the inhibitory effect of CCK8 predominated, indicating that CCK8 acted distal to the effect of insulin. Several lines of evidence suggest that this effect of CCK8 was via the CCK receptor and was mediated via a change in intracellular Ca2+: the effect of CCK8 on inhibiting IGF II binding was blocked by the cholecystokinin antagonist N2,O2'-dibutyryl cGMP; the cholinergic agent carbachol (1-100 microM), which acts through the muscarinic receptor to increase intracellular Ca2+, also inhibited IGF II binding; the Ca2+ ionophore A23187 (1-5 microM) mimicked the effects of CCK8 and carbachol. These data indicate, therefore, that CCK8 and possibly insulin may regulate the internalization of IGF II via intracellular Ca2+. Moreover, the data raise the possibility that alterations of hormone internalization may be a general phenomenon of hormone-hormone interaction.  相似文献   

18.
Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single‐step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro‐anabolic insulin‐like growth factor I (IGF‐I) in human peripheral blood aspirates via rAAV‐mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type‐II collagen, SOX9) activities in the samples relative to control (reporter rAAV‐lacZ) treatment over extended periods of time (at least 21 days, the longest time‐point evaluated). Interestingly, IGF‐I gene transfer also triggered hypertrophic, osteo‐ and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF‐I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries.  相似文献   

19.
The uterus and the placenta synthesize insulin‐like growth factors (IGFs) and insulin‐like binding proteins (IGFBPs). These growth factors are implicated in processes of proliferation and differentiation that occur in the uterus. To determine the patterns of expression of IGFs during rat pregnancy we used in situ hybridization with digoxigenin labeled probes on uterus from day 7 to day 16 of pregnancy. In early gestation days (7–8) both IGF mRNAs showed similar tissue distribution with relative abundance in the stroma and circular muscle layer. On days 11 and 12 expression for IGF‐I mRNA was found in the mesometrial decidua and metrial gland and in the ectoplacental cone while clear expression of IGF‐II mRNA could only be found in the latter. On days 13 and 14, expression for IGF‐I mRNA could be detected in the mesometrial decidua and metrial gland but no expression was observed for IGF‐II mRNA. A gradient of IGF‐I mRNA expression could be observed in the placenta on day 16, with the trophoblastic cells of the basal zone expressing the signal with stronger intensity than in the labyrinthine zone. For IGF‐II mRNA the highest expression was associated with the labyrinthine zone. Endovascular trophoblast was positive for both mRNAs. The spatial and temporal patterns of expression suggests a role for IGFs in the process of decidualization as well as in the establishment, growth and differentiation of the various trophoblast cells of the placenta. Mol. Reprod. Dev. 53:294–305, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Mannose 6-phosphate, insulin like growth factors I and II (IGF I, IGF II), insulin and epidermal growth factor (EGF) induce a 1.5- to 2-fold increase of mannose 6-phosphate binding sites at the cell surface of human skin fibroblasts. The increase is completed within 10-15 min, is dose and temperature dependent, reversible and transient even in the presence of the effectors. It is due to a redistribution of mannose 6-phosphate/IGF II receptors from internal membranes to the cell surface, while the affinity of the receptors is not affected. Combinations of mannose 6-phosphate with IGF I, IGF II or EGF stimulate the redistribution of the receptor to the cell surface in an additive manner, while combinations of the growth factors result in a non-additive stimulation of redistribution. The redistribution is not dependent on extracellular calcium and appears also to be independent of changes of free intracellular calcium. Pre-treatment of fibroblasts with cholera toxin or pertussis toxin increases the number of cell surface receptors 2- and 1.5-fold, respectively. Neither of the toxins affects the redistribution of mannose 6-phosphate/IGF II receptors induced by the growth factors, while both toxins abolish the receptor redistribution induced by mannose 6-phosphate. These results suggest a multiple regulation of the cell surface expression of mannose 6-phosphate/IGF II receptors by Gs- and Gi-like proteins sensitive to cholera toxin and pertussis toxin and by stimulation of mannose 6-phosphate/IGF II, IGF I and EGF receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号