首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haemorrhagic shock and resuscitation (HS/R) may cause global ischaemia‐reperfusion injury, which can result in systemic inflammation, multiorgan failure (particularly liver failure) and high mortality. Hinokitiol, a bioactive tropolone‐related compound, exhibits antiplatelet and anti‐inflammatory activities. Targeting inflammatory responses is a potential strategy for ameliorating hepatic injury during HS/R. Whether hinokitiol prevents hepatic injury during HS/R remains unclear. In the present study, we determined the role of hinokitiol following HS/R. The in vivo assays revealed that hinokitiol markedly attenuated HS/R‐induced hepatic injury. Hinokitiol could inhibited NF‐κB activation and IL‐6 and TNF‐α upregulation in liver tissues. Moreover, hinokitiol reduced caspase‐3 activation, upregulated Bax and downregulated Bcl‐2. These findings suggest that hinokitiol can ameliorate liver injury following HS/R, partly through suppression of inflammation and apoptosis. Furthermore, the in vitro data revealed that hinokitiol significantly reversed hypoxia/reoxygenation (H/R)‐induced cell death and apoptosis in the primary hepatocytes. Hinokitiol prevented H/R‐induced caspase‐3 activation, PPAR cleavage, Bax overexpression and Bcl‐2 downregulation. Moreover, hinokitiol attenuated H/R‐stimulated NF‐κB activation and reduced the levels of IL‐6 and TNF‐α mRNAs, suggesting that hinokitiol can protect hepatocytes from H/R injury. Collectively, our data suggest that hinokitiol attenuates liver injury following HS/R, partly through the inhibition of NF‐κB activation.  相似文献   

2.
3.
4.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Liver injury and dysregulated glucose homoeostasis are common manifestations during sepsis. Although plenty of studies reported insulin could protect against multiple organ injuries caused by critical infections among patients, little was known about the precise mechanism. We investigated whether liver inflammatory pathway and central neuropeptides were involved in the process. In sepsis rats, hepatic IKK/NF‐κB pathway and STAT3 were strongly activated, along with reduced body weight, blood glucose and suppressed hepatic gluconeogenesis (GNG). Peripheral insulin administration efficiently attenuated liver dysfunction and glucose metabolic disorders by suppressing hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC) expression, hepatic NF‐κB pathway and STAT3 phosphorylation. Furthermore, knockdown of hypothalamic POMC significantly diminished protective effect of insulin on hepatic GNG and insulin‐induced STAT3 inactivation, but not inflammation or IKK/NF‐κB pathway. These results suggest that hepatic IKK/NF‐κB pathway mediates the anti‐inflammatory effect of insulin in septic rats, and peripheral insulin treatment may improve hepatic GNG by inhibiting STAT3 phosphorylation dependent on hypothalamic POMC expression.  相似文献   

8.
Huang H  Zhao N  Xu X  Xu Y  Li S  Zhang J  Yang P 《Cell proliferation》2011,44(5):420-427
Objectives: To investigate tumor necrosis factor alpha (TNF‐α)‐induced changes in osteogenic differentiation from mesenchymal stem cells (MSCs). Materials and methods: Blockade of nuclear factor‐κB (NF‐κB) was achieved in ST2 murine MSCs via overexpression of the NF‐κB inhibitor, IκBα. Osteogenic differentiation was induced in IκBα‐overexpressing ST2 cells and normal ST2 cells when these cells were treated with TNF‐α at various concentrations. Expression levels of bone marker genes were determined using real time RT‐PCR and ALP activity assay. In vitro mineralization was performed to determine long‐term exposure to TNF‐α on mineral nodule formation. MTT assay was used to determine the changes in cell proliferation/survival. Results: Levels of Runx2, Osx, OC and ALP were up‐regulated in cell cultures treated with TNF‐α at lower concentrations, while down‐regulated in cell cultures treated with TNF‐α at higher concentrations. Blockade of NF‐κB signaling reversed the inhibitory effect observed in cell cultures treated with TNF‐α at higher concentrations, but showed no effect on cell cultures treated with TNF‐α at lower concentrations. In contrast, long‐term treatment of TNF‐α at all concentrations induced inhibitory effects on in vitro mineral nodule formation. MTT assay showed that TNF‐α inhibits proliferation/survival of mesenchymal stem cells when the NF‐κB signaling pathway is blocked. Conclusions: The binding of TNF‐α to its receptors results in the activation of multiple signaling pathways, which actively interact with each other to regulate the differentiation, proliferation, survival and apoptosis of MSCs.  相似文献   

9.
Branched‐chain amino acids (BCAA) supplementation has been reported to suppress the incidence of liver cancer in obese patients with liver cirrhosis or in obese and diabetic model animals of carcinogenesis. Whether BCAA directly suppresses cell proliferation of hepatic tumor cells under hyperinsulinemic condition remain to be defined. The aim of this study was to investigate the effects of BCAA on insulin‐induced proliferation of hepatic tumor cells and determine the underlying mechanisms. BCAA suppressed insulin‐induced cell proliferation of H4IIE, HepG2 cells. In H4IIE cells, BCAA did not affect cell cycle progression but increased apoptosis by suppressing expressions of anti‐apoptotic genes and inducing pro‐apoptotic gene via inactivation of PI3K/Akt and NF‐κB signaling pathways. Further studies demonstrated that BCAA inhibited PI3K/Akt pathway not only by promoting negative feedback loop from mammalian target of rapamycin complex 1 (mTORC1)/S6K1 to PI3K/Akt pathway, but also by suppressing mTORC2 kinase activity toward Akt. Our findings suggest that BCAA supplementation may be useful to suppress liver cancer progression by inhibiting insulin‐induced PI3K/Akt and subsequent anti‐apoptotic pathway, indicating the importance of BCAA supplementation to the obese patients with advanced liver disease. J. Cell. Physiol. 227: 2097–2105, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF‐κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF‐κB activation in GBM; however, the correlation between EGFR and the NF‐κB pathway remains unclear. In this study, we investigated the role of mucosa‐associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti‐tumour activity and effectiveness of MI‐2, a MALT1 inhibitor in a pre‐clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR‐induced NF‐kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle–associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF‐κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR‐induced NF‐kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.  相似文献   

13.
Estrogen receptor (ER)‐positive breast cancer cells have low levels of constitutive NF‐κB activity while ER negative (?) cells and hormone‐independent cells have relatively high constitutive levels of NF‐κB activity. In this study, we have examined the aspects of mutual repression between the ERα and NF‐κB proteins in ER+ and ER? hormone‐independent cells. Ectopic expression of the ERα reduced cell numbers in ER+ and ER? breast cancer cell lines while NF‐κB‐binding activity and the expression of several NF‐κB‐regulated proteins were reduced in ER? cells. ER overexpression in ER+/E2‐independent LCC1 cells only weakly inhibited the predominant p50 NF‐κB. GST‐ERα fusion protein pull downs and in vivo co‐immunoprecipitations of NF‐κB:ERα complexes showed that the ERα interacts with p50 and p65 in vitro and in vivo. Inhibition of NF‐κB increased the expression of diverse E2‐regulated proteins. p50 differentially associated directly with the ER:ERE complex in LCC1 and MCF‐7 cells by supershift analysis while p65 antibody reduced ERα:ERE complexes in the absence of a supershift. ChIP analysis demonstrated that NF‐κB proteins are present on an endogenous ERE. Together these results demonstrate that the ER and NF‐κB undergo mutual repression, which may explain, in part, why expression of the ERα in ER? cells does not confer growth signaling. Secondly, the acquisition of E2‐independence in ER+ cells is associated with predominantly p50:p50 NF‐κB, which may reflect alterations in the ER in these cells. Since the p50 homodimer is less sensitive to the presence of the ER, this may allow for the activation of both pathways in the same cell. J. Cell. Biochem. 107: 448–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A wealth of evidence supports the broad therapeutic potential of NF‐κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF‐κB and the NF‐κB interacting long non‐coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non‐canonical actions of EZH2 on the regulation of NF‐κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non‐transformed breast epithelial cells, triple negative MDA‐MB‐231 cells and hormone responsive MCF‐7 cells, and measured changes in EZH2/NF‐κB/NKILA levels to confirm their interdependence. We demonstrate cell line‐specific fluctuations in these factors that functionally contribute to epithelial‐to‐mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA‐MB‐231 cell motility and CDK4‐mediated MCF‐7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non‐transformed cells. Notably, these events are mediated by a cell‐context dependent gain or loss of NKILA and NF‐κB. Depletion of NF‐κB in non‐transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF‐κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.  相似文献   

15.
16.
17.
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use.  相似文献   

18.
Aberrant substance P/neurokinin‐1 receptor (SP/NK‐1R) system activation plays a critical role in various disorders, however, little is known about the expression and the detailed molecular mechanism of the SP and NK‐1R in gallbladder cancer (GBC). In this study, we firstly analyzed the expression and clinical significance of them in patients with GBC. Then, cellular assays were performed to clarify their biological role in GBC cells. Moreover, we investigated the molecular mechanisms regulated by SP/NK‐1R. Meanwhile, mice xenografted with human GBC cells were analyzed regarding the effects of SP/NK1R complex in vivo. Finally, patient samples were utilized to investigate the effect of SP/NK‐1R. The results showed that SP and NK‐1R were highly expressed in GBC. We found that SP strongly induced GBC cell proliferation, clone formation, migration and invasion, whereas antagonizing NK‐1R resulted in the opposite effects. Moreover, SP significantly enhanced the expression of NF‐κB p65 and the tumor‐associated cytokines, while, Akt inhibitor could reverse these effects. Further studies indicated that decreasing activation of NF‐κB or Akt diminished GBC cell proliferation and migration. In consistent with results, immunohistochemical staining showed high levels of Akt, NF‐κB and cytokines in tumor tissues. Most importantly, the similar conclusion was obtained in xenograft mouse model. Our findings demonstrate that NK‐1R, after binding with the endogenous agonist SP, could induce GBC cell migration and spreading via modulation of Akt/NF‐κB pathway.  相似文献   

19.
20.
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra‐physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells), Bcl‐2 (B‐cell lymphoma 2), SMAC/DIABLO (second mitochondria‐derived activator of caspases/direct IAP‐binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long‐term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF‐κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF‐κB. It has been argued that one of the pathways leading to the activation of NF‐κB could be under reactive oxygen species (ROS)‐mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF‐κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF‐κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF‐κB, and that this negative regulation of ROS is the means through which NF‐κB counters programmed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号