首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dnaB gene product was purified to homogeneity and its physical properties were characterized. Purification was aided by the use of the Escherichia coli strain. MV12/28, which overproduced the dnaB gene product 10-fold (Wickner, S. H., Wickner, R. B., and Raetz, C. R. H. (1976) Biochem. Biophys. Res. Commun. 70, 389-396) and by taking advantage of the enzyme's high affinity for both DEAE-cellulose and phosphocellulose. The most highly purified fractions gave a single stained band on native, polyacrylamide gels and dnaB enzymatic activity was coincident with this band. On denaturing sodium dodecyl sulfate-polyacrylamide gels, a single band was observed corresponding to a molecular weight of 48,000 +/- 2,000. The native molecular weight of 290,000 +/- 12,000 was calculated from determinations of the sedimentation coefficient, which was 11.3 S, and the Stokes radius, which was 60 A. Cross-linking the protein with dimethyl suberimidate yielded six bands. We conclude that the enzyme consists of six identical subunits. The apparent pI was 4.9 and the amino acid composition was typical except for the absence of cysteine.  相似文献   

2.
3.
E E Biswas  S B Biswas  J E Bishop 《Biochemistry》1986,25(23):7368-7374
The mechanism of nucleotide binding and hydrolysis by dnaB protein and dnaB X dnaC protein complex has been studied by using fluorescent nucleotide analogues. Binding of trinitrophenyladenosine triphosphate (TNP-ATP) or the corresponding diphosphate (TNP-ADP) results in a blue shift of the emission maximum and a severalfold amplification of the fluorescence emission of the nucleotide analogues. Scatchard analysis of TNP-ATP binding indicates that TNP-ATP binds with a high affinity (Kd = 0.87 microM) and a 8.5-fold enhancement of fluorescence emission of the nucleotide. Only three molecules of TNP-ATP or TNP-ADP bind per hexamer of dnaB protein in contrast to six molecules of ATP or ADP binding to a dnaB hexamer. TNP-ATP and TNP-ADP are both competitive inhibitors of single-stranded (SS) DNA-dependent ATPase activity of dnaB protein. TNP-AMP neither binds to dnaB protein nor inhibits the ATPase activity. Formation of dnaB X dnaC complex by dnaC protein results in diminution of the TNP-ATP fluorescence enhancement and a concomitant decrease in the SS DNA-dependent ATPase activity. Kinetic analysis of the ATPase activity of dnaB X dnaC complex indicates that the decrease in the ATPase activity on complex formation is due to a reduction of the maximal velocity (Vmax). The dnaB protein hydrolyzes both TNP-ATP and dATP, however, with an extremely slow rate in the presence of single-stranded M13 DNA. The 2'-OH group of the nucleotide most likely plays an important role in the hydrolysis reaction but not in the nucleotide binding.  相似文献   

4.
The nucleotide sequence of the Escherichia coli dnaC gene and the primary structure of the dnaC protein were determined. The NH2-terminal amino acid sequence of the dnaC protein matched that predicted from the nucleotide sequence of the 735-base pair coding region. The dnaC gene lacks characteristic promoter structures; neither the "Pribnow box" nor the "-35 sequence" was detected within 222 base pairs upstream from the initiator ATG codon. There is, however, a typical Shine-Dalgarno sequence 7-10 base pairs before the ATG codon. An upstream open reading frame, separated by just 2 base pairs from the coding region of dnaC, encodes the COOH-terminal half of the dnaT product (protein i; Masai, H., Bond, M. W., and Arai, K. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 1256-1260). The dnaC protein contains 245 amino acids with a calculated molecular weight of 27,894 consistent with the observed value (29,000). Similar to dnaG and dnaT, dnaC uses several minor codons; the significance of these minor codons to the low level expression of the protein product in E. coli cells remains to be determined. The in vitro site-directed mutagenesis method was employed to determine the functional region involved in interaction with dnaB protein. The first cysteine residue located in the NH2-terminal region of the dnaC protein (Cys69) was shown to be important for this activity. Overall sequence homology between dnaC protein and lambda P protein, functionally analogous to the dnaC protein in the lambda phage DNA replication, is not extensive. There are, however, several short stretches of homologous regions including the NH2-terminal eight amino acids and the Cys78 region of dnaC protein.  相似文献   

5.
Purification and crystallization of dnaB protein from Escherichia coli was performed on a large scale by a simple procedure. From 1.5 kg of cells, 520 mg of dnaB protein were obtained in a 58% yield with a purity greater than 99%. The E. coli cells harbor a high copy-number plasmid carrying the dnaB gene and overproduce the enzyme over 200-fold. The subunit molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 50,000. Based on a native Mr = 290,000 and cross-linking studies that yielded six bands, dnaB protein is judged to be a hexamer, confirming the results of Reha-Krantz, L. J., and Hurwitz, J. (1978) J. Biol. Chem. 253, 4043-4050.  相似文献   

6.
We have directly tested the effects of host cell DNA synthesis mutations on bacteriophage phiK replicative-form (RF) DNA replication in vivo. We observed that phiK RF DNA replication continued at normal rates in both dnaB and dnaC mutant hosts under conditions in which the activities of the dnaB and dnaC gene products were shown to be markedly reduced. This suggests that these two host proteins are not essential for normal phiK RF DNA replication. In control experiments we observed markedly reduced rates of phiK RF DNA replication in temperature-sensitive dnaG and dnaE host mutants, indicating that the products of these genes are essential. Thus, the mechanism of DNA chain initiation in vivo on the duplex RF DNA templates of isometric phages such as phiK apparently is different from that on the similar templates of isometric phages such as phiX174. The implications of this difference are discussed in the text.  相似文献   

7.
The dnaB protein of Escherichia coli groPB mutants   总被引:1,自引:0,他引:1  
  相似文献   

8.
The grpE protein of Escherichia coli. Purification and properties   总被引:31,自引:0,他引:31  
The grpE gene of Escherichia coli was first identified because a mutation in it, grpE280, prevented bacteriophage lambda DNA replication in vivo. Subsequent work resulted in the identification of the grpE protein in two-dimensional gels and its classification as a heat shock protein. Here we report the purification of the grpE protein. We show that overproduction of grpE occurs in dnaK 103 bacteria which do not produce a functional Mr 72,000 dnaK protein. The grpE protein was purified from this strain primarily by its specific retention on a dnaK affinity column. The interaction between these two proteins, which is stable in the presence of 2 M KCl, allowed other proteins to be washed from this column. grpE was then eluted by ATP, which disrupts the interaction. During purification, grpE activity was monitored by its ability to complement an in vitro lambda dv DNA replication system dependent on the lambda O and lambda P proteins. The effect of ATP on the dnaK-grpE complex was also observed during sedimentation of the two proteins in glycerol gradients. Purified grpE protein has a Mr of approximately 23,000 under both denaturing and native conditions, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation, respectively. However, in the presence of dnaK under native conditions, grpE cosediments with dnaK. When ATP is added to the gradient, the complex is disrupted, and the two proteins sediment independently as monomers.  相似文献   

9.
10.
Exonuclease VIII of Escherichia coli. I. Purification and physical properties   总被引:10,自引:0,他引:10  
Exonuclease VIII is an enzyme whose synthesis is induced as a result of sbcA mutations. The enzyme has been purified to near homogeneity from an Escherichia coli strain containing an sbcA mutation and mutations in the structural genes for exonuclease III, exonuclease V, and endonuclease I. The enzyme specifically degrades linear duplex DNA in a reaction which requires magnesium ions and is susceptible to inhibition by other divalent cations and by sulfhydryl-blocking reagents. Enzyme activity occurs over a broad pH range with peak activity at pH 8.5 in Tris buffer. The protein has a subunit Mr = 140,000, a sedimentation coefficient of 8.4 +/- 0.6, and a Stokes radius of 142 +/- 6 A, which is consistent with its active form being a multimer. Exonuclease VIII has a frictional coefficient of 2.6 which indicates that it has an asymmetric structure.  相似文献   

11.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

12.
The purification of the Escherichia coli dnaB protein by affinity chromatography on nucleotides bound to agarose is described. The dnaB protein, which contains an associated ribonucleoside triphosphatase activity (Wickner, S., Wright, M., and Hurwitz, J. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 783-787) binds to immobilized ATP, ADP, and UDP, but not to AMP. The type of linkage of ATP to agarose influences the adsorption, elution, and purification of the enzyme. Optimal purification is achieved using ATP bound to agarose via its oxidized ribose moiety. By this means, the dnaB protein can be obtained at least 95% electrophoretically pure after only three purification steps. The enzyme can be eluted from immobilized nucleoside-5'-di- and -triphosphates by ATP, ADP, and pyrophosphate, but not by AMP or orthophosphate. ADP and pyrophosphate, as well as the substrate ATP in high concentration are at the same time inhibitors of the ribonucleoside triphosphatase. The dnaB complementing and ribonucleoside triphosphatase activities could not be separated from each other by affinity chromatography, supporting the finding of others that they both reside on the same protein complex, namely a dnaB multimer. The results indicate that the dnaB protein binds to immobilized nucleotides by means of its ribonucleoside triphosphatase, and that at least the pyrophosphate moiety is essential for adsorption as well as elution of the enzyme.  相似文献   

13.
14.
The Escherichia coli dnaB replication protein is a DNA helicase   总被引:55,自引:0,他引:55  
Genetic and biochemical analyses indicate that the Escherichia coli dnaB replication protein functions in the propagation of replication forks in the bacterial chromosome. We have found that the dnaB protein is a DNA helicase that is capable of unwinding extensive stretches of double-stranded DNA. We constructed a partially duplex DNA substrate, containing two preformed forks of single-stranded DNA, which was used to characterize this helicase activity. The dnaB helicase depends on the presence of a hydrolyzable ribonucleoside triphosphate, is maximally stimulated by a combination of E. coli single-stranded DNA-binding protein and E. coli primase, is inhibited by antibody directed against dnaB protein, and is inhibited by prior coating of the single-stranded regions of the helicase substrate with the E. coli single-stranded DNA-binding protein. It was determined that the dnaB protein moves 5' to 3' along single-stranded DNA, apparently in a processive fashion. To invade the duplex portion of the helicase substrate, the dnaB protein requires a 3'-terminal extension of single-stranded DNA in the strand to which it is not bound. Under optimal conditions at 30 degrees C, greater than 1 kilobase pair of duplex DNA can be unwound within 30 s. Based on these findings and other available data, we propose that the dnaB protein is the primary replicative helicase of E. coli and that it actively and processively migrates along the lagging strand template, serving both to unwind the DNA duplex in advance of the leading strand and to potentiate synthesis by the bacterial primase of RNA primers for the nascent (Okazaki) fragments of the lagging strand.  相似文献   

15.
Summary The role of E. coli dnaB and dnaC protein in the replication of plasmid ColE1 and RSF1030 DNA was investigated in a soluble in vitro system (Staudenbauer, 1976a). Extracts from dnaB and dnaC mutants which are phenotypically DNA initiationor DNA elongation-defective were examined for their replicative capacity. It was found that all mutants tested are deficient in the synthesis of supercoiled plasmid DNA. Deficient extracts of dnaB mutants could be partially complemented by purified dnaB wild type protein but required for full complementation dnaC wild type protein as well. The dnaB wild type protein could be replaced by a P1dnaB analog (ban) protein complexed with a dnaB ts protein. Deficient extracts of dnaC mutants were complemented by purified dnaC wild type protein alone.The in vitro plasmid replication cycle had been separated into an early and late stage (Staudenbauer, 1977). Analysis by CsCl velocity centrifugation of the plasmid DNA synthesized in mutant extracts indicates that the early stage, namely the synthesis of early replicative intermediates, proceeds in all dnaB and dnaC mutants tested. However, replication of the early intermediates during the late stage depends on both the dnaB and dnaC protein. These conclusions were confirmed using inhibitors of DNA synthesis.  相似文献   

16.
17.
18.
The enzymatic activities of Escherichia coli recA protein are sensitive to ionic composition. Here we report that sodium glutamate (NaGlu) is much less inhibitory to the DNA strand exchange, DNA-dependent ATPase, and DNA binding activities of the recA protein than is NaCl. Both joint molecule formation and complete exchange of DNA strands occur (albeit at reduced rates) at NaGlu concentrations as high as 0.5 M whereas concentrations of NaCl greater than 0.2 M are sufficient for complete inhibition. The single-stranded DNA (ssDNA)-dependent ATPase activity is even less sensitive to inhibition by NaGlu; ATP hydrolysis stimulated by M13 ssDNA is unaffected by 0.5 M NaGlu and is further stimulated by E. coli ssDNA binding protein approximately 2-fold. Finally, NaGlu has essentially no effect on the stability of recA protein-epsilon M13 DNA complexes, with concentrations of NaGlu as high as 1.5 M failing to dissociate the complexes. Surprisingly, NaGlu also has little effect on the concentration of NaCl required to disrupt the recA protein-epsilon M13 DNA complex, demonstrating that destabilization is dependent on both the concentration and type of anionic rather than cationic species. Quantitative analysis of DNA binding isotherms establishes that the intrinsic binding affinity of recA protein is affected by the anionic species present and that the cooperativity parameter is relatively unaffected. Consequently, the sensitivity of recA protein-ssDNA complexes to disruption by NaCl does not result from the competitive effects associated with cation displacement from the ssDNA upon protein binding but rather results from anion displacement upon complex formation. The magnitude of this anion-specific effect on ssDNA binding is large relative to that of other nucleic acid binding proteins.  相似文献   

19.
As a preliminary to the understanding of the function of the highly conserved Escherichia coli heat shock protein HtpG, the protein was purified and partially characterized. The htpG gene was subcloned into the inducible expression vector, pT7-6. Upon induction, the HtpG protein accumulated to approximately 30% of the total protein in the cell. A purification scheme was devised which involved column chromatography on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200. The amino acid composition of the purified protein corresponded closely with the predicted amino acid composition derived from the DNA sequence, and the sequence of the 8 amino-terminal residues matched the predicted sequence exactly. The molecular weight of the denatured protein is 65,500 and the native molecular weight is 144,620, as calculated by using both the Stokes radius and the sedimentation coefficient. As the molecular weight predicted from the DNA sequence is 71,429, this indicates the HtpG protein is a dimer. The HtpG protein was found to be a phosphoprotein. Thus, HtpG is structurally similar to its eukaryotic homologue, hsp83, which is also a phosphoprotein and a dimer.  相似文献   

20.
Stabilization by ATP and ADP of Escherichia coli dnaB protein activity   总被引:2,自引:0,他引:2  
The effect of adenine ribonucleotides on the stability of Escherichia coli dnaB protein in cellular crude extracts was studied. Stabilization of dnaB protein by ATP or ADP, but not by AMP, was manifested in that (i) the activity and yield of wild type dnaB protein is enhanced in the presence of ATP, (ii) the dnaB protein of E. coli dnaB mutants, such as groPB and dnaB252/ColE1::dnaC+, which is inactive in a dnaB complementation assay, can be isolated in active form in the presence of ATP or aDP, (iii) ATP or ADP protect the dnaB protein of an E. coli dnaBts mutant from inactivation at 37 degrees C, and (iv) inactive groPB and dnaBts protein can be reactivated partially by ATP. Thus, the stabilizing effect of ATP and ADP can be exploited for the isolated of otherwise inactive or labile mutant dnaB proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号