首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fermentation device, the rotorfermentor, is described and some experimental results are presented on power requirements and oxygen mass transfer characteristics of the rotorfermentor. This fermentation device is designed to achieve high cell concentrations in batch and continuous cultures. Basically, the rotorfermentor consists of a rotating microporous membrane which is enclosed within a stationary fermentor vessel. The metabolic products in the broth are continuously removed by filtration through the rotating microporous membrane while the growing cells can be retained inside the fermentor. This dual function of cell growth and concentration with the simultaneous removal of metabolic products is the essential characteristic of the rotorfermentor.  相似文献   

2.
Lactococcus lactis 65.1 was cultivated in a batch culture, which underwent starvation for 3 days, continuous culture and continuous culture with complete cell recycling. The objective was to study the product formation and intracellular protein pattern. Changes from homofermentative to heterofermentative metabolism were observed in continuous culture at the lower dilution rates as well as continuous cultures with complete cell recycling at a fixed dilution rate (D=0.4 h–1). Changes in intracellular protein pattern were observed when starving the cells in a batch culture and also when recycling the cells in a continuous culture. Some changes were the same in these two cases. The data collected from these experiments show how the fermentation technique can affect the products of the microorganism being cultured and gives some interesting information on the complete cell recycling technique, which is of great interest in fermentation processes.  相似文献   

3.
Dimethylamine, methylamine, propylamine, and pyrrolidine were the major amines formed by Bacteroides fragilis NCDO 2217 during the active phase of growth in batch culture. Production of these metabolites was strongly pH dependent and was optimal under acidic conditions (pH 6.0). Low pH also favored the formation of pyrrolidine, cadaverine, and dimethylamine by Clostridium perfringens C523, but the reverse was the case with putrescine, butylamine, and propylamine, where production was maximal at neutral pH. B. fragilis was grown in continuous culture under either starch or casein limitation. Amine formation was influenced by carbohydrate availability and was greatest when the bacteria were grown at high growth rates (dilution rate, 0.20/h) under starch limitation, where they constituted about 18% of the total fermentation products measured. Amine production was optimal and increased concomitantly with growth rate when C. perfringens was grown in glucose-limited continuous culture. Under conditions of high growth rate and glucose limitation, amines accounted for approximately 27% of the fermentation products measured. When glucose in the feed medium was increased from 5 to 15 g/liter, amine production was repressed, and under these nutritional conditions the growth rate had little effect on the process.  相似文献   

4.
Summary A population of mixed rumen bacteria was maintained in a chemostat at four different dilution rates, with glocose as the growth limiting carbon and energy substrate. Increasing the dilution rate shifted the proportions of end products: methane decreased and propionate increased. Fermentation and hydrogen balances were calculated from the fermentation end products. Values were similar to earlier ones from batch incubations of rumen contents. This suggests that theoretical overall reaction schemes for carbohydrate fermentation in the rumen, proposed earlier, are also valid in continuous culture.A positive correlation between dilution rate and microbial growth efficiency (gNinc./kg OMf was observed, confirming earlier work.Apparently conflicting results of chemostat work and recent in vivo experiments are discussed.  相似文献   

5.
Information on fermentation process kinetics is potentially valuable for the improvement of batch process performance; it is essential for continuous process design. An empirical examination of rate patterns in various fermentations discloses three basic types: (1) 'growth associated' products arising directly from the energy metabolism of carbohydrates supplied, (2) indirect products of carbohydrate metabolism and (3) products apparently unrelated to carbohydrate oxidation. Effects of operating variables on the primary kinetic processes, growth, sugar utilization and antibiotic formation, in the penicillin process, illustrate the special nature of this type.  相似文献   

6.
For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr(-1). The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield.  相似文献   

7.
The Luedeking-Piret equation was used to fit the kinetic data of pullulan fermentations from peat hydrolyzate substrate. In batch mode, the kinetic parameters m, n, alpha, and beta varied as a function of fermentation conditions: aeration rate, agitation speed, and temperature. In constant-feed fed-batch mode, the parameters Varied according to the feed rates. In peat hydrolyzate medium, the polysaccharide synthesis was strongly growth associated in batch and continuous fermentations but entirely growth associated in fedbatch fermentations. The fed-batch mode of fermentation with an appropriate feed rate is more advantageous with respect to batch and continuous fermentations. Therefore, if the fermentation is started batchwise and then followed by fed-batch mode at a constant feed rate, the overall polysaccharide productivity (g pullulan/L h) is significantly higher than those obtained with batch or continuous fermentations using the same total medium volume.  相似文献   

8.
Dimethylamine, methylamine, propylamine, and pyrrolidine were the major amines formed by Bacteroides fragilis NCDO 2217 during the active phase of growth in batch culture. Production of these metabolites was strongly pH dependent and was optimal under acidic conditions (pH 6.0). Low pH also favored the formation of pyrrolidine, cadaverine, and dimethylamine by Clostridium perfringens C523, but the reverse was the case with putrescine, butylamine, and propylamine, where production was maximal at neutral pH. B. fragilis was grown in continuous culture under either starch or casein limitation. Amine formation was influenced by carbohydrate availability and was greatest when the bacteria were grown at high growth rates (dilution rate, 0.20/h) under starch limitation, where they constituted about 18% of the total fermentation products measured. Amine production was optimal and increased concomitantly with growth rate when C. perfringens was grown in glucose-limited continuous culture. Under conditions of high growth rate and glucose limitation, amines accounted for approximately 27% of the fermentation products measured. When glucose in the feed medium was increased from 5 to 15 g/liter, amine production was repressed, and under these nutritional conditions the growth rate had little effect on the process.  相似文献   

9.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

10.
Cell recycle and vacuum fermentation processes are described for the continuous production of ethanol. Preliminary process design studies are employed to make an economic comparison of these alternative fermentation schemes with continuous and batch fermentation technologies. Designs are based on a production capacity of 78,000 gal 95% ethanol (EtOH)/day employing molasses as the fermentation substrate. The studies indicate that a 57% reduction in fixed capital investment is realized by continuous rather than batch operation. Further decreases in required capital investment of 68 and 71% over batch fermentation were obtained for cell recycle and vacuum operation, respectively. However, ethanol production costs were dominated by the cost of molasses, representing over 75% of the total manufacturing cost. But, when a reasonable yeast by-product credit was assumed, the net production cost for 95% ethanol was estimated at 82.3 and 80.6 cent/gal, for the cell recycle and vacuum processes, respectively.  相似文献   

11.
A general hypothesis is presented for the decline in the rate of ethanol production (per unit of cell protein) during batch fermentation. Inhibition of ethanol production is proposed to result from the intracellular accumulation of AMP during the transition from growth to the stationary phase. AMP acts as a competitive inhibitor of hexokinase with respect to ATP. When assayed in vitro in the presence of ATP and AMP concentrations equivalent to those within cells at different stages of fermentation, hexokinase activity declined in parallel with the in vivo decline in the rate of ethanol production. The coupling of glycolytic flux and fermentation to cell growth via degradation products of RNA may be of evolutionary advantage for Saccharomyces cerevisiae. Such a coupling would reduce the exposure of nongrowing cells to potentially harmful concentrations of waste products from metabolism and would conserve nutrients for future growth under more favorable conditions.  相似文献   

12.
Pseudomonas oleovorans and recombinant strains containing the alkane oxidation genes can produce alkane oxidation products in two‐liquid phase bioreactor systems. In these bioprocesses the cells, which grow in the aqueous phase, oxidize apolar, non‐water soluble substrates. The apolar products typically accumulate in the emulsified apolar phase. We have studied both the bioconversion systems and several downstream processing systems to separate and purify alkanols from these two‐liquid phase media. Based on the information generated in these studies, we have now designed bioconversion and downstream processing systems for the production of 1‐alkanols from n‐alkanes on a 10 kiloton/yr scale, taking the conversion of n‐octane to 1‐octanol as a model system. Here, we describe overall designs of fed‐batch and continuous‐fermentation processes for the oxidation of octane to 1‐octanol by Pseudomonas oleovorans, and we discuss the economics of these processes. In both systems the two‐liquid phase system consists of an apolar phase with hexadecene as the apolar carrier solvent into which n‐octane is dissolved, while the cells are present in the aqueous phase. In one system, multiple‐batch fermentations are followed by continuous processing of the product from the separated apolar phase. The second system is based on alkane oxidation by continuously growing cultures, again followed by continuous processing of the product. Fewer fermentors were required and a higher space‐time‐yield was possible for production of 1‐octanol in a continuous process. The overall performance of each of these two systems has been modeled with Aspen software. Investment and operating costs were estimated with input from equipment manufacturers and bulk‐material suppliers. Based on this study, the production cost of 1‐octanol is about 7 US$kg−1 when produced in the fed‐batch process, and 8 US$kg−1 when produced continuously. The comparison of upstream and downstream capital costs and production costs showed significantly higher upstream costs for the fed‐batch process and slightly higher upstream costs for continuous fermentation. The largest cost contribution was due to variable production costs, mainly resulting from media costs. The organisms used in these systems are P. putida alk+ recombinants which oxidize alkanes, but cannot oxidize the resulting alkanols further. Hence, such cells need a second carbon source, which in these systems is glucose. Although the continuous process is about 10% more expensive than the fed‐batch process, improvements to reduce overall cost can be achieved more easily for continuous than for fed‐batch fermentation by decreasing the dilution rate while maintaining near constant productivity. Improvements relevant to both processes can be achieved by increasing the biocatalyst performance, which results in improved overall efficiency, decreased capital investment, and hence, decreased production cost. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 84: 459–477, 1999.  相似文献   

13.
A response surface method of smoothing fermentation data with spline functions is presented. The available electron balance is used to optimally select the values of the smoothing parameters associated with the spline functions. The method is applied to six sets of anaerobic fermentation data in which pure and mixed cultures are grown in batch followed by fed batch culture. Lactobacillus bulgaricus and Streptococcus thermophilus are cultured on 3% dry milk. Measured concentrations of biomass, lactose, galactose, lactic acid, and other acid products are smoothed using spline functions. Values of specific growth rate, specific lactose consumption rate, specific galactose formation rate, and specific acid product formation rate are estimated and the consistency of the results is examined using the available electron balance. The results show that the method works reasonably well, but that an upper bound should be used for the smoothing parameters to obtain accurate estimates of the derivative quantities.  相似文献   

14.
Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.  相似文献   

15.
Several issues of butyric acid production with bacteria through fermentation are presented in this review. The current progress including the utilization of butyric acid, the production strains, the metabolic pathway, and regulation are presented in the paper. Process operation modes such as batch, fed-batch, and continuous fermentation are being discussed. Genetic engineering technologies for microbial strain improvement are also being discussed and fermentation systems have been recommended.  相似文献   

16.
The production of ethanol from cheese whey lactose has been demonstrated using a single-stage continuous culture fermentation with 100% cell recycle. In a two-step process, an aerobic fed batch operation was used initially to allow biomass buildup in the absence of inhibitory ethanol concentrations. In the anaerobic ethanol-producing second step, a strain of Kluyveromyces fragilis selected on the basis of batch fermentation data had a maximum productivity of 7.1 g ethanol/L/h at a dilution rate of 0.15 h(-1), while achieving the goal of zero residual sugar concentration. The fermentation productivity diminished when the feed sugar concentation exceeded 120 g/L despite the inclusion of a lipid mixture previous shown to enhance batch fermentation productivities.  相似文献   

17.
Two general models for batch simultaneous enzymatic and microbial reaction (SEMR) processes are presented, the second derived from and simpler than the first and accounting for enzyme denaturation. Using the second model and parameter values from the literature, simulation was used to examine a range of enzyme addition rate strategies (in which the rate was a linear function of time) for a relatively fast ethanol fermentation and for a longer duration citric acid fermentation, both using cellulose as the substrate. For the ethanol process it is optimal (for a specific objective function which accounts for product value and enzyme cost) to add all the enzyme at the beginning of the process. But for the citric acid process a linearly decreasing enzyme addition rate, coupled with the addition of a small fraction of the enzyme at time zero, is better than pure batch operation or operation with the best constant enzyme feed rate.  相似文献   

18.
A fermentation system with a plug scheme unit has been developed, offering a variety of solutions to measurement, control, and operational problems. By means of the program unit, e.g., automatic pH control assigned to the dynamic of batch cultures and the feed of different ingredients controlled by a time program or a given variable have been solved. The continuous culture volume was controlled by a level controlled by a level controller equipped with a photosensor. A method was developed for variable control that provide information on the activity of the culture, and allows direct measurement of the different rate values, e.g., generation time or specific product formation rate. Applicability of the direct measurement of generation time is presented in the qualification of molasses and in a static off-line optimization process.  相似文献   

19.
Summary Substrate inhibition in batch fermentations can be avoided by employing the fed-batch technique in which substrate concentration is kept at low levels by a programmed feed rate. This research demonstrates the use of a heat-flux sensor to control substrate addition by continuously monitoring evolving heat which is proportional to fermentation rate. Batch fermentation with 240 g/L glucose in the medium was compared with a fed-batch starting with 20 g/L glucose in the medium and increased, with 500 g/L glucose, to a final equivalent glucose concentration of 240 g/L. The batch fermentation produced 106 g/L ethanol in 39 hr at 2.72 g/L/h, while the best fed-batch produced 114 g/L ethanol in 34 hr at 3.35 g/L/h with the same nutrients.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

20.
Bioconversion of cellulose to acetate was accomplished with cocultures of two organisms. One was the cellulolytic species Ruminococcus albus. It ferments crystalline cellulose (Avicel) to acetate, ethanol, CO(inf2), and H(inf2). The other organism (HA) obtains energy for growth by using H(inf2) to reduce CO(inf2) to acetate. HA is a gram-negative coccobacillus that was isolated from horse feces. Coculture of R. albus with HA in batch or continuous culture alters the fermentation products formed from crystalline cellulose by the ruminococcus via interspecies H(inf2) transfer. The major product of the fermentation by R. albus and HA coculture is acetate. High concentrations of acetate (333 mM) were obtained when batch cocultures grown on 5% cellulose were neutralized with Ca(OH)(inf2). Continuous cocultures grown at retention times of 2 and 3.1 days produced 109 and 102 mM acetate, respectively, when fed 1% cellulose with utilization of 84% of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号