首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constitution of the photosystem I complex isolated from the cyanobacterium Gloeobacter violaceus PCC 7421 was investigated by tricine-urea-SDS-PAGE, followed by peptide mass fingerprinting or N-terminal sequencing. Eight subunits (PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaL and PsaM) were identified as predicted from the genome sequence. A novel subunit (PsaZ) was discovered, but PsaI, PsaJ, PsaK and PsaX were absent. PsaB has a C-terminal extension with 155 amino acids in addition to the conserved region and this domain is similar to the peptidoglycan-binding domain. These results suggest that PS I complexes of G. violaceus have unique structural properties.  相似文献   

2.
Thylakoid membranes, obtained from leaves of 14 d soybean (Glycine max L. cv. Williams) plants, were treated with the chemical crosslinkers glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to investigate the structural organization of photosystem I. Polypeptides were resolved using lithium dodecyl sulfate polyacrylamide gel electrophoresis, and were identified by western blot analysis using a library of polyclonal antibodies specific for photosystem I subunits. An electrophoretic examination of crosslinked thylakoids revealed numerous crosslinked products, using either glutaraldehyde or EDC. However, only a few of these could be identified by western blot analysis using subunit-specific polyclonal antibodies. Several glutaraldehyde dependent crosslinked species were identified. A single band was identified minimally composed of PsaC and PsaD, documenting the close interaction between these two subunits. The most interesting aspect of these studies was a crosslinked species composed of the PsaB subunit observed following EDC treatment of thylakoids. This is either an internally crosslinked species, which will provide structural information concerning the topology of the complex PsaB protein, a linkage with a polypeptide for which we do not yet have an immunological probe, or a masking of epitopes by the EDC linkage at critical locations in the peptide which is linked to PsaB.  相似文献   

3.
We previously showed that most subunits in the oxygen-evolving photosystem II (PSII) preparation from the diatom Chaetoceros gracilis are proteolytically unstable. Here, we focused on identifying the proteases that cleave PSII subunits in thylakoid membranes. Major PSII subunits and fucoxanthin chlorophyll (Chl) a/c‐binding proteins (FCPs) were specifically degraded in thylakoid membranes. The PSI subunits, PsaA and PsaB, were slowly degraded, and cytochrome f was barely degraded. Using zymography, proteolytic activities for three metalloproteases (116, 83, and 75 kDa) and one serine protease (156 kDa) were detected in thylakoid membranes. Two FCP fractions (FCP-A and FCP-B/C) and a photosystem fraction were separated by sucrose gradient centrifugation using dodecyl maltoside‐solubilized thylakoids. The FCP-A fraction featured enriched Chl c compared with the bulk of FCP-B/C. Zymography revealed that 116, 83, and 94 kDa metalloproteases were mostly in the FCP-A fraction along with the 156 kDa serine protease. When solubilized thylakoids were separated with clear-native PAGE, zymography detected only the 83 kDa metalloprotease in the FCP-A band. Because FCP-A is selectively associated with PSII, these FCP-A-associated metalloproteases and serine protease may be responsible for the proteolytic degradation of FCPs and PSII in thylakoid membranes.  相似文献   

4.
Zak E  Pakrasi HB 《Plant physiology》2000,123(1):215-222
Specific inhibition of photosystem I (PSI) was observed under low-temperature conditions in the cyanobacterium Synechocystis sp. strain PCC 6803. Growth at 20 degrees C caused inhibition of PSI activity and increased degradation of the PSI reaction center proteins PsaA and PsaB, while no significant changes were found in the level and activity of photosystem II (PSII). BtpA, a recently identified extrinsic thylakoid membrane protein, was found to be a necessary regulatory factor for stabilization of the PsaA and PsaB proteins under such low-temperature conditions. At normal growth temperature (30 degrees C), the BtpA protein was present in the cell, and its genetic deletion caused an increase in the degradation of the PSI reaction center proteins. However, growth of Synechocystis cells at 20 degrees C or shifting of cultures grown at 30 degrees C to 20 degrees C led to a rapid accumulation of the BtpA protein, presumably to stabilize the PSI complex, by lowering the rates of degradation of the PsaA and PsaB proteins. A btpA deletion mutant strain could not grow photoautotrophically at low temperature, and exhibited rapid degradation of the PSI complex after transfer of the cells from normal to low temperature.  相似文献   

5.
Photosystem I contains several peripheral membrane proteins that are located on either positive (luminal) or negative (stromal or cytoplasmic) sides of thylakoid membranes of chloroplasts or cyanobacteria. Incorporation of two peripheral subunits into photosystem I of the cyanobacterium Synechocystis species PCC 6803 was studied using a reconstitution system in which radiolabeled subunits II (PsaD) and IV (PsaE) were synthesized in vitro and incubated with the isolated thylakoid membranes. After such incubation, the subunits were found in the membranes and were resistant to digestion with proteases and removal by 2 molar NaBr. All of the radioactive proteins incorporated in the membrane were found in the photosystem I complex. The subunit II was assembled specifically into cyanobacterial thylakoid membranes and not into Escherichia coli cell membranes or thylakoid membranes isolated from spinach. The assembly process did not require ATP or proton motive force, and it was not stimulated by ATP. The assembly of subunits II and IV into thylakoid membranes isolated from the strain AEK2, which lacks the gene psaE, was increased two- to threefold. The incorporation of subunit II was 15 to 17 times higher in the thylakoids obtained from the strain ADK3 in which the gene psaD has been inactivated. However, assembly of subunit IV in the same thylakoids was reduced by 65%, demonstrating that the presence of subunit II is required for the stable assembly of subunit IV. Large deletions in subunit II prevented its incorporation into thylakoids and assembly into photosystem I, suggesting that the overall conformation of the protein rather than a specific targeting sequence is required for its assembly into photosystem I.  相似文献   

6.
7.
Summary cDNA clones encoding three photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses 13, 5 and 3 kDa (thylakoid polypeptides 28, 35 and 37; P28, P35 and P37, respectively) were isolated using gene specific oligonucleotides as probes. The sequences of these oligonucleotides were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that the proteins are encoded by single-copy genes. The mRNA sizes of the three components are 960 (P28), 1120 (P35) and 790 (P37) nucleotides. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the nascent polypeptides possess N-terminal transit sequences that are removed to give mature proteins of 11.0 (P28), 10.0 (P35) and 8.4 (P37) kDa. Analysis of the deduced protein sequences suggests that P28 and P35 are extrinsic membrane proteins and that P37 spans the thylakoid membrane. All three proteins have short transit peptides that probably route them to the stromal side of the thylakoid membrane.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - RuBisCO ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P28, P35 and P37 Chlamydomonas reinhardtii thylakoid polypeptides 28, 35 and 37 The nucleotide sequences presented here will appear in the EMBL/Genbank/DDBJ Nucleotide Sequence Databases under the accession numbers X15164 (11.0 kDa subunit; P28), X15165 (10.0 kDa subunit; P35) and X15166 (8.4 kDa subunit; P37)  相似文献   

8.
Q Xu  P R Chitnis 《Plant physiology》1995,108(3):1067-1075
PsaA and PsaB are homologous integral membrane-proteins that form the heterodimeric core of photosystem i (PSI). We used subunit-deficient PSI complexes from the mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 to examine interactions between PsaB and other PSI subunits. Incubation of the wild-type PSI with thermolysin yielded 22-kD C-terminal fragments of PsaB that were resistant to further proteolysis. Modification of the wild-type PSI with N-hydroxysuccinimidobiotin and subsequent cleavage by thermolysin showed that the lysyl residues in the 22-kD C-terminal domain were inaccessible to modification by N-hydroxysuccinimidobiotin. The absence of PsaE, PsaF, PsaI, PsaJ, or PsaL facilitated accumulation of 22-kD C-terminal fragments of PsaB but did not alter their resistance to further proteolysis. When the PsaD-less PSI was treated with thermolysin, the 22-kD C-terminal fragments of PsaB were rapidly cleaved, with concomitant accumulation of a 16-kD fragment and then a 3.4-kD one. We mapped the N termini of these fragments by N-terminal amino acid sequencing and the C termini from their positive reaction with an antibody against the C-terminal peptide of PsaB. The cleavage sites were proposed to be in the extramembrane loops on the cytoplasmic side. Western blot analyses showed resistance of PsaC and PsaI to proteolysis prior to cleavage of the 22-kD fragments. Therefore, we propose that PsaD shields two extramembrane loops of PsaB and protects the C-terminal domain of PsaB from in vitro proteolysis.  相似文献   

9.
Photosystem I (PS I) is a transmembranal multisubunit complex that mediates light-induced electron transfer from plactocyanine to ferredoxin. The electron transfer proceeds from an excited chlorophyll a dimer (P700) through a chlorophyll a (A0), a phylloquinone (A1), and a [4Fe-4S] iron-sulfur cluster FX, all located on the core subunits PsaA and PsaB, to iron-sulfur clusters FA and FB, located on subunit PsaC. Earlier, it was attempted to determine the function of FX in the absence of FA/B mainly by chemical dissociation of subunit PsaC. However, not all PsaC subunits could be removed from the PS I preparations by this procedure without partially damaging FX. We therefore removed subunit PsaC by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp. PCC 6803. Cells could not grow under photosynthetic conditions when subunit PsaC was deleted, yet the PsaC-deficient mutant cells grew under heterotrophic conditions and assembled the core subunits of PS I in which light-induced electron transfer from P700 to A1 occurred. The photoreduction of FX was largely inhibited, as seen from direct measurement of the extent of electron transfer from A1 to FX. From the crystal structure it can be seen that the removal of subunits PsaC, PsaD, and PsaE in the PsaC-deficient mutant resulted in the braking of salt bridges between these subunits and PsaB and PsaA and the formation of a net of two negative surface charges on PsaA/B. The potential induced on FX by these surface charges is proposed to inhibit electron transport from the quinone. In the complete PS I complex, replacement of a cysteine ligand of FX by serine in site-directed mutation C565S/D566E in subunit PsaB caused an approximately 10-fold slow down of electron transfer from the quinone to FX without much affecting the extent of this electron transfer compared with wild type. Based on these and other results, we propose that FX might have a major role in controlling electron transfer through PS I.  相似文献   

10.
cDNA clones encoding two Photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses of 18 and 11 kDa (thylakoid polypeptides 21 and 30; P21 and P30 respectively) were isolated using oligonucleotides, the sequences of which were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that both proteins are encoded by single-copy genes. The mRNA sizes of the two components are 1400 and 740 nucleotides, respectively. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the molecular masses of the mature proteins are 17.9 (P21) and 8.1 kDa (P30). Analysis of the deduced protein sequences predicts that both subunits are extrinsic membrane proteins with net positive charges. The amino acid sequences of the transit peptides suggest that P21 and P30 are routed towards the lumenal and stromal sides of the thylakoid membranes, respectively.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - Rubisco ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P21 and P30 C. reinhardtii thylakoid polypeptides 21 and 30  相似文献   

11.
采用去污剂TritonX-100增溶类囊体膜和高速离心的方法,首次分离和纯化了毕氏海蓬子的光系统Ⅱ(photosystemⅡ,PSⅡ)颗粒,通过光谱学和SDS-PAGE对其进行鉴定并与类囊体膜进行比较。室温吸收光谱结果表明,PSⅡ颗粒在蓝区的叶绿素(chlorophyll,ChOb和胡萝卜素类吸收峰为485nm,在红区的Ch1b吸收峰为655nm,这两个峰值均低于类囊体膜中的。77K荧光发射光谱结果表明,提取的PSⅡ颗粒基本不含光系统Ⅰ(photosystemⅠ,PSI)的低温荧光反射峰737nm。77K荧光激发光谱结果显示,海蓬子PSⅡ颗粒在470-485am之间的Ch1b 和胡萝卜素类的荧光发射峰明显低于类囊体膜的。这说明在PSⅡ中大部分的PSI已被除去。电泳结果显示,海蓬子PSⅡ颗粒缺少PSI反应中心蛋白质亚基PsaA和PsaB,这说明提取到的PSⅡ纯度较高,这为进一步研究毕氏海蓬子PSⅡ的结构与功能奠定基础。  相似文献   

12.
Functional proteomics of membrane proteins is an important tool for the understanding of protein networks in biological membranes but structural studies on this part of the proteome are limited. In this study we undertook such an approach to analyse photosynthetic thylakoid membranes isolated from wild-type and mutant strains of Chlamydomonas reinhardtii. Thylakoid membrane proteins were separated by high-resolution two-dimensional gel electrophoresis (2-DE) and analysed by immuno-blotting and mass spectrometry for the presence of membrane-spanning proteins. Our data show that light-harvesting complex proteins (LHCP), that cross the membrane with three transmembrane domains, can be separated using this method. We have identified more than 30 different LHCP spots on our gels. Mass spectrometric analysis of 2-DE separated Lhcb1 indicates that this major LHCII protein can associate with the thylakoid membrane with part of its putative transit sequence. Separation of isolated photosystem I (PSI) complexes by 2-DE revealed the presence of 18 LHCI protein spots. The use of two peptide-specific antibodies directed against LHCI subunits supports the interpretation that some of these spots represent products arising from differential processing and post-translational modifications. In addition our data indicate that the reaction centre subunit of PSI, PsaA, that possesses 11 transmembrane domains, can be separated by 2-DE. Comparison between 2-DE maps from thylakoid membrane proteins isolated from a PSI-deficient (Deltaycf4) and a crd1 mutant, which is conditionally reduced in PSI and LHCI under copper-deficiency, showed the presence of most of the LHCI spots in the former but their absence in the latter. Our data demonstrate that (i) hydrophobic membrane proteins like the LHCPs can be faithfully separated by 2-DE, and (ii) that high-resolution 2-DE facilitates the comparative analysis of membrane protein complexes in wild-type and mutants cells.  相似文献   

13.
A photoactive photosystem I complex has been purified from the filamentous, nitrogen-fixing cyanobacterium Anabaena variabilis ATCC 29413. Cells were broken using glass beads, and the membrane fraction was solubilized with beta-dodecyl maltoside followed by two rounds of fast protein liquid chromatography on anion exchange columns. The polypeptide composition of the isolated complex was determined by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis and N-terminal amino acid sequencing of the fractionated proteins. The purified complex consists of at least 11 proteins, identified as the PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaI, PsaJ, PsaK, PsaL, and PsaN proteins. The spectrum of the flash-induced absorbance change measured between 670 and 830 nm shows that the purified complex contains 99 +/- 11 chlorophyll a molecules per P700, the primary donor in photosystem I. The kinetics of the rereduction of oxidized P700 following an actinic flash indicate that forward electron transfer from P700 to the FA/FB iron-sulfur center acceptors is functional in the isolated complex.  相似文献   

14.
The permeability to protein molecules of the outer limitingmembranes and the thylakoid membranes in hypotonically shockedprotoplasts of the thermophilic cyanobacterium Synechococcussp. was studied by examining the effects of NaBr-washing andpronase E-digestion on phycobiliproteins and a 35 kDa proteinwhich are associated with the outer and inner surface of thethylakoid membranes, respectively, and by measuring photooxidationof added cytochrome c. All the results obtained indicate thatthe shocked protoplasts are in essence a homogenous right side-outthylakoid membrane preparation; the outer limiting membranesare leaky to protein molecules, whereas the thylakoid membranesare still impermeable to proteins. The thylakoid membranes becamepermeable to proteins when the protoplasts were mechanicallydisrupted. Following on from these findings, the membrane topology of subunitpolypeptides of the photosystem I reaction center complex wasstudied. Proteolytic digestion of shocked protoplasts with trypsinand pronase E indicated that four of the five subunit polypeptidesof the PS I reaction center complex are exposed at the stromalsurface of thylakoid membranes; two subunits of 14 and 13 kDawere selectively digested by trypsin, whereas two chlorophyll-bindingsubunits of 62 and 60 kDa were preferentially attacked by pronaseE. However, a 10 kDa subunit appears to be strongly resistantto the proteases. Experiments with mechanically disrupted protoplastsfailed to provide evidence for a uniform transmembrane organizationof the PS I subunits. (Received March 31, 1986; Accepted August 18, 1986)  相似文献   

15.
The nucleotide sequences of the genes coding for the subunits of the Photosystem I (PS I) core, PsaA and PsaB were determined for the marine prokaryotic oxyphototrophs Prochlorococcus sp. MED4 (CCMP1378), P. marinus SS120 (CCMP1375) and Synechococcus sp. WH7803. Divergence of these sequences from those of both freshwater cyanobacteria and higher plants was remarkably high, given the conserved nature of PsaA and PsaB proteins. In particular, the PsaA of marine prokaryotes showed several specific insertions and deletions with regard to known PsaA sequences. Even in between the two Prochlorococcus strains, which correspond to two genetically different ecotypes with shifted growth irradiance optima, the sequence identity was only 80.2% for PsaA and 88.9% for PsaB. Possible causes and implications of the fast evolution rates of these two PS I core subunits are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
We used isotope dilution MS to measure the stoichiometry of light‐harvesting complex I (LHCI) proteins with the photosystem I (PSI) core complex in the green alga Chlamydomonas reinhardtii. Proteotypic peptides served as quantitative markers for each of the nine gene products (Lhca1–9) and for PSI subunits. The quantitative data revealed that the LHCI antenna of C. reinhardtii contains about 7.5 ± 1.4 subunits. It further demonstrated that the thylakoid LHCI population is heterogeneously composed and that several lhca gene products are not present in 1:1 stoichiometries with PSI. When compared with vascular plants, LHCI of C. reinhardtii possesses a lower proportion of proteins potentially contributing to far‐red fluorescence emission. In general, the strategy presented is universally applicable for exploring subunit stoichiometries within the C. reinhardtii proteome.  相似文献   

17.
We have examined the assembly of the nuclear-encoded subunits of the oxygen-evolving complex (OEC) after their import into isolated intact chloroplasts. We showed that all three subunits examined (OE33, OE23, and OE17) partition between the thylakoid lumen and a site on the inner surface of the thylakoid membrane after import in a homologous system (e.g., pea or spinach subunits into pea or spinach chloroplasts, respectively). Although some interspecies protein import experiments resulted in OEC subunit binding, maize OE17 did not bind thylakoid membranes in chloroplasts isolated from peas. Newly imported OE33 and OE23 were washed from the membranes at the same concentrations of urea and NaCl as the native, indigenous proteins; this observation suggests that the former subunits are bound productively within the OEC. Inhibition of neither chloroplast protein synthesis nor light- or ATP-dependent energization of the thylakoid membrane significantly affected these assembly reactions, and we present evidence suggesting that incoming subunits actively displace those already bound to the thylakoid membrane. Transport of OE33 took place primarily in the stromal-exposed membranes and proceeded through a protease-sensitive, mature intermediate. Initial binding of OE33 to the thylakoid membrane occurred primarily in the stromal-exposed membranes, from where it migrated with measurable kinetics to the granal region. In contrast, OE23 assembly occurred in the granal membrane regions. This information is incorporated into a model of the stepwise assembly of oxygen-evolving photosystem II.  相似文献   

18.
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.  相似文献   

19.
The photosystem I (PSI) complex consisting of reaction center (RC) subunits, several peripheral subunits and many co-factors, is present in the thylakoid membranes of chloroplasts and cyanobacteria. The assembly of RC subunits (PsaA/B) that bind electron transfer co-factors and antenna pigments is an intricate process, and is mediated by several auxiliary factors such as Ycf3, Y3IP1/CGL59, Ycf4 and Ycf37/PYG7/CGL71. However, their precise molecular mechanisms in RC assembly remain to be addressed. Here we purified four PSI auxiliary factors by affinity chromatography, and characterized co-purified PSI assembly intermediates. We suggest that Ycf3 assists the initial assembly of newly synthesized PsaA/B subunits into an RC subcomplex, while Y3IP1 may be involved in transferring the RC subcomplex from Ycf3 to the Ycf4 module that stabilizes it. CGL71 may form an oligomer that transiently interacts with the PSI RC subcomplex, physically protecting it under oxic conditions until association with the peripheral PSI subunits occurs. Together, our results reveal the interplay among four auxiliary factors required for the stepwise assembly of the PSI RC.  相似文献   

20.
The subunit arrangement of the photosystem I reaction centercomplex in the thylakoid membranes of the thermophilic cyanobacteriumSynechococcus sp. was examined using three cross-linking reagents.(1) Treatments of osmotically shocked and NaBr-washed protoplastswith low concentrations of hydrophilic cross-linking reagents,dimethyladipimidate and glutaraldehyde, preferentially decreased62, 60, 14 and 13 kDa polypeptides of the photosystem I reactioncenter complex resolved by SDS-polyacrylamide gel electrophoresis,together with the anchor protein and allophycocyanin which areassociated with the outer surface of the thylakoid membranes.This suggests that these four subunits of the photosystem Icomplex are exposed on the stromal surface of thylakoid membranes.In contrast, a hydrophobic cross-linker, hexamethylenediisocyanate,unspecifically cross-linked most of the membrane polypeptides.(2) The 13 and 14 kDa polypeptides decreased always in parallelto each other on treatment of the protoplasts or isolatd CP1-awith the three cross-linking reagents, and the disappearanceof the two polypeptides was accompanied by the appearance ofa cross-linked product(s), when fixed with glutaraldehyde andhexamethylenediisocyanate. The results suggest that the 13 and14 kDa polypeptides are neighboring polypeptides in the complex. (Received June 7, 1986; Accepted November 13, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号