首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational properties of streptokinase   总被引:6,自引:0,他引:6  
The conformational properties of streptokinase (SK) have been assessed by the techniques of differential scanning calorimetry, circular dichroism (CD), and through a combinational approach employing several algorithms which are predictive of secondary structural characteristics. In low ionic strength buffers, SK undergoes a reversible two-state thermal transition with a temperature of maximum heat capacity (Tm) of 46.1 +/- 0.9, a delta Hcal of 98 +/- 11 kcal/mol and a delta Hcal/delta HvH of approximately 1. In high ionic strength buffers, similar calorimetric properties were obtained with the exception that the delta Hcal/delta HvH values were considerably less than 1, indicating the existence of an additional irreversible thermally induced alteration in the molecule, most likely resulting in its aggregation. The effect of pH on the thermal unfolding properties of SK was determined. The results demonstrated that single two-state thermal transitions were obtained, with progressively decreasing Tm values, as the pH was reduced from 6.4 to 3.4, indicating a destabilization of the entire molecule at reduced pH. In the alkaline region, between pH 8.4 and 9.4, stabilization of a separate region of the molecule was obtained, as evidenced by an increase in the delta Hcal/delta HvH to values approximating 2. CD analysis was performed in order to estimate secondary structural characteristics of SK. The best fit of secondary structural parameters to the experimental CD spectrum provided estimates of 17% helices, 28% beta-sheet, 21% beta-turns, and 34% disordered structures. Both the intensity of the spectral band at 208 nm and the level of antiparallel beta-sheet strongly suggest that SK is an alpha + beta protein.  相似文献   

2.
The thermal denaturation of ribonuclease A has been studied by differential scanning calorimetry in the presence of 4-chlorobutan-1-ol. The thermal transitions were observed to be reversible at pH 5.5 in the presence of low concentration (up to 50 mM) of the alcohol, irreversible in the intermediate (50 mM < c < mM) and again reversible in the presence of 250 mM and higher concentrations of 4-chlorobutan-1-ol. In the presence of 50 mM 4-chlorobutan-1-ol, ribonuclease A is present in two conformational states unfolding at different temperatures. The reversible thermal transitions have been fitted to a two-state native-to-denatured mechanism. Irreversible thermal transitions have been analyzed according to two-state irreversible native-to-denatured kinetic model. Using the irreversible model, rate constant as a function of temperature and energy of activation of the irreversible process have been calculated. Circular dichroism and fluorescence spectroscopic results corroborate the DSC observations and indicate a protein conformation with poorly defined tertiary structure and high content of secondary structure in the presence of 50 mM 4-chlorobutan-1-ol at a temperature corresponding to the second transition. Similar results have been observed at pH 3.9.  相似文献   

3.
Hydrodynamic, spectroscopic, and chemical crosslinking studies on monomer chromatin subnits are reported as a function of ionic strength, pH, and temperature. In earlier studies, two salt-dependent conformational transitions were described (Gordon et al., Proceedings of the National Academy of Science, 75, 660, 1978). Transition one occurred between 0.7 and 2.0 mM ionic strength and transition two occurred between 5.0 and 11.0 mM ionic strength. Crosslinking at 11 mM ionic strength with formaldehyde suppressed both transitions. In this communication we report that the second transition was characterized by changes in the circular dichroism spectra in the 260--320 nm region as well as by changes in the hydrodynamic properties. As the ionic strength was increased from 5.0 to 11.0 mM, [theta]282 decreased from 2000 TO 1500 DEG CM2/DMOLE AND [THETA]295 decreased from 0 to -400 deg cm2/dmole. Both transitions occurred in the pH range from pH 6.0 to 9.2. At pH 5.0, the two ionic strength-dependent transitions were no longer observed and the characteristic changes in the circular dichroism spectra were suppressed. The spectra of the monomer subunits at pH 5.0 showed only small changes with ionic strength and resembled the spectra of the subunits at 11 mM ionic strength above pH 6.0. In order to characterize the transitions in thermodynamic terms an ionic strength near the midpoint of each transition was selected. Then, changes in s20,w and D20,w were measured as a function of temperature. These data allow an estimation to be made of the enthalpies and entropies of the transitions.  相似文献   

4.
5.
We report on a differential scanning calorimetry study of native purple membranes under the following solvent conditions: 50 mM carbonate-bicarbonate, 100 mM NaCl, pH 9.5 and 190 mM phosphate, pH 7.5. The calorimetric transitions for bacteriorhodopsin denaturation are highly scanning-rate dependent, which indicates that the thermal denaturation is under kinetic control. This result is confirmed by a spectrophotometric study on the kinetics of the thermal denaturation of this protein. The calorimetric data at pH 9.5 conform to the two-state irreversible model. Comments are made regarding the information obtainable from differential scanning calorimetry studies on bacteriorhodopsin denaturation and the effect of irreversibility on the stability of membrane proteins. Correspondence to: J. M. Sanchez-Ruiz  相似文献   

6.
The thermal denaturation of bovine beta-lactoglobulin B was investigated by high-sensitivity differential scanning microcalorimetry between pH 1.5 and 3.0 in 20 mM phosphate buffer. The process was found to be a reversible, two-state transition. Progressive addition of guanidine hydrochloride at pH 3.0 leads to the appearance of a low-temperature calorimetric endotherm, corresponding to the cold renaturation of the protein. Circular dichroism experiments have confirmed the low and high temperature denaturation processes, and have shown some structural differences between both denatured states of beta-lactoglobulin B.  相似文献   

7.
The effect of binding a high mobility group protein (HMG 17) on the stability and conformation of acetylated and control HeLa high molecular weight core chromatin (stripped of H1 and non-histone chromosomal proteins) was studied by circular dichroism and thermal-denaturation measurements. Previously it had been shown that conformational differences exist between native whole chromatin derived from butyrate-treated (acetylated) and control HeLa cells and that these conformational differences disappear by removing H1 and non-histone chromosomal proteins (Reczek, P.R., Weissman, D., Huvos, P.E. and Fasman, G.D. (1982) Biochemistry 21, 993–1002). The circular dichroism spectra and the thermal denaturation profiles of control and acetylated core chromatin were found to be similar. The circular dichroism properties of HMG 17 reconstituted highly acetylated and control core chromatin indicated the same alteration of chromatin structure at low ionic strength (1 mM sodium phosphate/0.25 mM EDTA, pH 7.0). The magnitudes of the decrease in ellipticity were proportional to the amount of HMG 17 bound and were found to be the same for both the acetylated and control core chromatin. Thermal denaturation profiles confirmed this change in structure induced by HMG 17 on control and highly acetylated core chromatin. The thermal denaturation profiles, which were resolved into three component transitions, exhibited a shifting of hyperchromicity from the lower melting transitions to the higher melting transitions, with a concomitant rise in Tm, on HMG 17 binding to both control and acetylated chromatin. The natures of the interactions of HMG 17 at higher ionic strength (50 mM NaCl/0.25 mM EDTA/1 mM sodium phosphate, pH 7.0) with acetylated and control core chromatin were slightly different, as measured by circular dichroism; however, a decrease in ellipticity was observed for both samples upon binding of HMG 17. These observations suggest that acetylation coupled with HMG 17 binding to core chromatin does not loosen chromatin structure. HMG 17 binding to control and acetylated core chromatin produces an overall stabilization and compaction of chromatin structure.  相似文献   

8.
Zaiss K  Jaenicke R 《Biochemistry》1999,38(14):4633-4639
The folding of phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima and its isolated N- and C-terminal domains (N1/2 and C1/2) was characterized by differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. At pH 3.0-4.0, reversible thermal denaturation of TmPGK occurred below 90 degrees C. The corresponding peaks in the partial molar heat capacity function were fitted by a four-state model, describing three well-defined unfolding transitions. Using CD spectroscopy, these are ascribed to the disruption of the domain interactions and subsequent sequential unfolding of the two domains. The isolated N-terminal domain unfolds reversibly between pH 3.0 and pH 4.0 to >90% and at pH 7.0 to about 70%. In contrast, the isolated engineered C-terminal domain only shows reversible thermal denaturation between pH 3.0 and pH 3.5. Neither N1/2 nor C1/2 obeys the simple two-state mechanism of unfolding. Instead, both unfold via a partially structured intermediate. In the case of N1/2, the intermediate exhibits native secondary structure and perturbed tertiary structure, whereas for C1/2 the intermediate could not be defined with certainty.  相似文献   

9.
HMG-1 was isolated from newborn calf thymus without exposure to overt denaturing conditions. The purified protein was digested under several solvent conditions with the proteinase (endoproteinase GluC) from Staphylococcus aureus strain V8. We found that the preferred site of attack by the enzyme on HMG-1 was influenced markedly by ionic strength and temperature. In 0.35 M NaCl/50 mM Tris-phosphate (pH 7.8) at 37 degrees C, cleavage near the junction between the A and B domains is predominant, as previously reported by Carballo et al. (EMBO J. 2 (1983) 1759-1764). However, in 50 mM Tris-phosphate (pH 7.8) lacking NaCl and at 0 degrees C, cleavage between the B and C domains strongly predominates. Three major products of the digestions were purified and characterized. The fragment consisting of domains B and C was found by circular dichroism to contain a substantial amount of helix. This re-emphasizes the importance of avoiding overt denaturing conditions when working with members of the HMG-1 family.  相似文献   

10.
Changes in the conformational state of chromatin core particles from chicken erythrocytes were studied by both immunochemical and biophysical methods as a function of pH and ionic strength. When the pH of core particles in a solution of ionic strength 3, 60 or 220 mM was lowered from pH 7.5, a sharp transition in the circular dichroism spectrum of DNA monitored between 320 and 260 nm was observed at pH 6.65. This change in DNA ellipticity was totally reversible. Binding to core particles of antibodies specific for histones H2B, H2A, H3 and for the IRGERA (synthetic C-terminal) peptide of H3 was used to follow changes in histone antigenicity. Binding was studied in the pH range 7.5-5.35, and at ionic strength of 60 and 220 mM. A change in reactivity of some histone epitopes was observed around pH 6.2–6.5. However, the changes observed by circular dichroism and antibody binding pertain to different components of chromatin subunits and they probably reflect independent phenomena. The alteration in accessibility of these determinants at the surface of core particles was completely reversible and was dependent on ionic strength. The conformation changes in core particles occurring near physiological ionic strength and pH may reflect dynamic changes in chromatin structure that possess functional significance.  相似文献   

11.
G L Lilley  L W Fung 《Life sciences》1987,41(22):2429-2436
The spin-label electron paramagnetic resonance (EPR) technique has been used to study the interaction between human hemoglobin and erythrocyte membranes as a function of temperature and ionic strength. We show, for the first time, experimental evidence for the existence of the interaction at physiological pH, ionic strength and temperature. In addition to the pH dependence that we have previously reported, the interactions are also temperature and ionic strength dependent. Using a simple two-state equilibrium model to analyze the EPR data, we obtain an equilibrium dissociation constant of about 8.1 +/- 5.6 X 10(-5) M for hemoglobin-membrane systems in 5 mM phosphate with 150 mM NaCl at pH 7.4 and 37 degrees C.  相似文献   

12.
The solution structure of the histone-like DNA-binding protein, HBsu, from Bacillus subtilis in 2 mM sodium cacodylate, pH 7.5, is sensitive to the ionic strength of the buffer. This was shown by circular dichroism measurements at different concentrations of sodium chloride and potassium fluoride. The stability of HBsu is also influenced; at HBsu concentrations of about 0.1 mg.ml-1, melting temperatures of 32 degrees C and 55 degrees C were found in the absence of potassium fluoride and in the presence of 0.5 M potassium fluoride, respectively, exhibiting drastic ionic-strength-dependent differences in the temperature-induced unfolding of HBsu. Furthermore, at low ionic strength, circular dichroism spectra vary markedly depending on the HBsu concentration in the approximate range 0.2-3 mg.ml-1. Such protein-concentration-dependent differences in the spectra were not observed in the presence of 0.5 M potassium fluoride. Very similar circular dichroism spectra of HBsu and the histone-like DNA-binding protein of Bacillus stearothermophilus (HBst) at high ionic strength, indicate comparable structures of both proteins under these conditions. Estimation of the secondary structure content from the circular dichroism spectra yields data which are in satisfactory agreement with the values obtained from the crystal structure of HBst. Transition temperatures of 45 degrees C and 61 degrees C were found in differential scanning calorimetric measurements performed with HBsu in potassium-fluoride-free buffer and in the presence of 0.5 M potassium fluoride, respectively. The thermodynamic data point to the melting of native HBsu dimers into two denatured monomers.  相似文献   

13.
Isolated constant domains from two Bence-Jones proteins VAD and BIR able to form amyloid fibrils, whereas only the first of them to keep specific ability of the intact protein. Studies of conformation and stability of these proteins by scanning microcalorimetry, circular dichroism, fluorescence and analytical centrifugation at physiological conditions (10 mM phosphate buffer, pH 7.0, 100 mM NaCl) showed that the stability of isolated pair of constant domains (C(L)-C(L)) VAD and BIR is reduced by compared with standard (nonamyloidogenic) Bence-Jones protein. However, in the intact protein BIR stability of his constant domains increases sharply, which correlated with the loss of the protein ability to form amyloid fibrils.  相似文献   

14.
The two-domain structure of streptokinase (Sk) was demonstrated by scanning calorimetric investigations at neutral pH and low ionic strength. The melting pattern of the protein is composed of two two-state transitions at TtrS1 = 45.9 +/- 0.4 degrees C with delta H1 = 431 +/- 18 kJ/mol, and TtrS2 = 60.1 +/- 1.3 degrees C with delta H2 = 306 +/- 16 kJ/mol. The partial specific heat capacity of native Sk was determined to be Cp = 1.42 +/- 0.17 J/K/g and the denaturational heat capacity change associated with the two transitions, delta Cp1 = 0.21 J/K/g and delta Cp2 = 0.38 J/K/g, respectively. The overall melting pattern of Sk remains almost unchanged at a variety of tested solvent compositions, except at pH 4 (and below) and in the presence of denaturants. The two domains show different susceptibility to urea. It is proposed that the less thermostable domain is located within the N-terminal part (residues 1-230), and the more thermostable one, within the C-terminal region.  相似文献   

15.
The pH- and electrolyte-dependent charging of collagen I fibrils was analyzed by streaming potential/streaming current experiments using the Microslit Electrokinetic Setup. Differential scanning calorimetry and circular dichroism spectroscopy were applied in similar electrolyte solutions to characterize the influence of electrostatic interactions on the conformational stability of the protein. The acid base behavior of collagen I was found to be strongly influenced by the ionic strength in KCl as well as in CaCl(2) solutions. An increase of the ionic strength with KCl from 10(-4) M to 10(-2) M shifts the isoelectric point (IEP) of the protein from pH 7.5 to 5.3. However, a similar increase of the ionic strength in CaCl(2) solutions shifts the IEP from 7.5 to above pH 9. Enhanced thermal stability with increasing ionic strength was observed by differential scanning calorimetry in both electrolyte systems. In line with this, circular dichroism spectroscopy results show an increase of the helicity with increasing ionic strength. Better screening of charged residues and the formation of salt bridges are assumed to cause the stabilization of collagen I with increasing ionic strength in both electrolyte systems. Preferential adsorption of hydroxide ions onto intrinsically uncharged sites in KCl solutions and calcium binding to negatively charged carboxylic acid moieties in CaCl(2) solutions are concluded to shift the IEP and influence the conformational stability of the protein.  相似文献   

16.
Sticholysin II (Stn II) is a cytolytic protein produced by the sea anemone Stichodactyla helianthus, its effect being related to pore formation. The conformation of the protein and its temperature-induced transitions, in the 1.5-12.0 pH range and in the 0-0.5 M NaCl concentration interval, have been studied by circular dichroism and fluorescence spectroscopy. At temperature < 35 degrees C, the protein maintains the same, high beta-structure content, folded conformation in the 1.5-11.0 pH range and ionic strength up to 0.5 M. In the 1.5-3.5 pH range and ionic strength > or = 0.1 M, Stn II shows a thermal transition, resulting in a partially folded state characterized by: (i) a native-like content of regular secondary structure, as detected by far-UV CD; (ii) a largely disordered tertiary structure, as detected by near-UV CD, with partially exposed tryptophan residues according to their fluorescence emission; and (iii) ability to bind the hydrophobic probe 2-anilinonaphthalene-6-sulfonic acid. In the pH range 4.0-10.5, thermally-induced protein aggregation occurs. The obtained results demonstrate the existence of partially folded state of Stn II, which may contribute to the pore formation ability of this cytolysin.  相似文献   

17.
The interaction between mesquite seed galactomannan (MSG; D-mannose to D-galactose ratio (M/G) approximately 1.1) and deacetylated xanthan (DX) in 5 mM NaCl leading to synergistic gel formation at 25 degrees C was investigated and compared with the far more studied system made of xanthan and locust bean gum (LBG; M/G approximately 3.5). Rheology and differential scanning calorimetry were used to measure temperatures of gel formation and transition enthalpy as a function of polymer composition, while circular dichroism was used to probe the conformation of DX in the LBG-DX system. MSG and DX associate at 25 degrees C with a well defined stoichiometry of 0.6:1.0 (w/w) at low ionic strength favouring the disordered coil state of DX. When LBG was used in place of MSG in water or 5 mM NaCl, two types of mechanisms of interpolymeric association are envisaged.  相似文献   

18.
Differential scanning calorimetry, circular dichroism spectroscopy, nuclear magnetic resonance spectroscopy, and numerical simulations were used to study the thermostability of the N-terminal RNA-binding domain (RBD) of the SARS-CoV nucleocapsid protein. The transition temperature of the RBD in a mixing buffer, composed of glycine, sodium acetate, and sodium phosphate with 100 mM sodium chloride, at pH 6.8, determined by differential scanning calorimetry and circular dichroism, is 48.74°C. Experimental results showed that the thermal-induced unfolding-folding transition of the RBD follows a two-state model with a reversibility >90%. Using a simple Gō-like model and Langevin dynamics we have shown that, in agreement with our experiments, the folding of the RBD is two-state. Theoretical estimates of thermodynamic quantities are in reasonable agreement with the experiments. Folding and thermal unfolding pathways of the RBD also were experimentally and numerically studied in detail. It was shown that the strand β1 from the N-terminal folds last and unfolds first, while the remaining β-strands fold/unfold cooperatively.  相似文献   

19.
We report here on the stability and folding of the 91 residue alpha-helical F29W N-terminal domain of chicken skeletal muscle troponin C (TnC(1-91)F29W), the thin filament calcium-binding component. Unfolding was monitored by differential scanning calorimetry, circular dichroism, and intrinsic fluorescence spectroscopy using urea, pH, and temperature as denaturants, in the absence and in the presence of calcium. The unfolding of TnC(1-91)F29W was reversible and did not follow a two-state transition, suggesting that an intermediate may be present during this reaction. Our results support the hypothesis that intermediates are likely to occur during the folding of small proteins and domains. The physiological significance of the presence of an intermediate in the folding pathway of troponin C is discussed.  相似文献   

20.
Isolated constant domains of two Bence Jones proteins, VAD and BIR, are able to form amyloid fibrils, but only the first one retains this feature within the intact protein. The conformation and stability of these proteins were studied using scanning microcalorimetry, circular dichroism, fluorescence spectroscopy, and analytical centrifugation at physiological conditions (10 mM phosphate buffer, pH 7.0, 100 mM NaCl), and it was shown that isolated pairs of constant domains (CL-CL) of VAD and BIR had reduced stability in comparison to ordinary (nonamyloidogenic) Bence Jones proteins. However, in the intact BIR protein, the stability of the constant domain block increased dramatically, in agreement with the loss of ability to form amyloid fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号