首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Hydroxytyrosine, (E)- and (Z)-p-hydroxyphenyl-acetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile are established intermediates in the biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin (Halkier, B. A., Olsen, C. E., and M?ller, B. L. (1989) J. Biol. Chem. 264, 19487-19494. Simultaneous measurements of oxygen consumption and biosynthetic activity using a microsomal enzyme system isolated from etiolated sorghum seedlings demonstrate a requirement for three oxygen molecules in the conversion of tyrosine to p-hydroxymandelonitrile. Two oxygen molecules are consumed in the conversion of tyrosine to (E)-p-hydroxyphenylacetaldehyde oxime, indicating the existence of a previously undetected hydroxylation step in addition to that resulting in the formation of N-hydroxytyrosine. Radioactively labeled 1-nitro-2-(p-hydroxyphenyl)ethane was chemically synthesized and tested as a possible intermediate. Biosynthetic experiments demonstrate that the microsomal enzyme system metabolizes the nitro compound to the subsequent intermediates in dhurrin synthesis (Km = 0.05 mM; Vmax = 14 nmol/mg of protein/h). Low amounts of 1-nitro-2-(p-hydroxyphenyl)ethane are produced in the microsomal reaction mixtures when tyrosine is used as substrate. These data support the involvement of 1-nitro-2-(p-hydroxyphenyl)ethane or more likely its aci-nitro tautomer as an intermediate between N-hydroxytyrosine and p-hydroxyphenylacetaldehyde oxime. The conversion of (E)-p-hydroxyphenylacetaldehydeoxime to p-hydroxymandelonitrile requires a single oxygen molecule. The oxygen molecule is utilized for hydroxylation of p-hydroxyphenylacetonitrile into p-hydroxymandelonitrile. This indicates that the conversion of p-hydroxyphenylacetaldehyde oxime into p-hydroxyphenylacetonitrile proceeds by a simple dehydration reaction.  相似文献   

2.
The following compounds were tested as early intermediates in the conversion of tyrosine to p-hydroxymandelonitrile by a microsomal preparation from dark grown sorghum seedlings: p-hydroxyphenylacetamide, 1-nitro-2-p-hydroxyphenylethane, p-hydroxyphenyl-pyruvic acid oxime, tyramine, N-hydroxytyramine, and N-hydroxytyrosine. Of these, only N-hydroxytyrosine was metabolized to p-hydroxymandelonitrile. N-Hydroxytyrosine was produced from L-[U-14C]tyrosine in tracer experiments when unlabeled N-hydroxytyrosine was added as a trap. These data indicate N-hydroxytyrosine as the first intermediate in the biosynthesis of dhurrin, the cyanogenic glucoside of sorghum, and represent the first demonstration of the formation of an alpha-N-hydroxy-amino acid in a biological system. The enzyme system involved in this reaction was partially characterized with respect to substrate specificity and the effect of various inhibitors. The enzyme was shown to have properties different than those reported for the mammalian enzyme system(s) involved in the N-hydroxylation of amine drugs. The possible involvement of N-hydroxyamino acids in the biosynthesis of other secondary plant products is discussed.  相似文献   

3.
The new route of the plant lipoxygenase pathway, directed specifically towards the ketodiene formation, was detected during in vitro experiments with Jerusalem artichoke (Helianthus tuberosus) tubers. Through this pathway (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD) is reduced to corresponding 13-hydroxy acid (13-HOD), which is in turn dehydrogenated into ketodiene (9Z,11E,13S)-13-oxo-9,11-octadecadienoic acid (13-KOD). Dehydrogenation of 13-HOD into 13-KOD was not dependent on the presence of either NAD or NADP, but was strongly dependent on the presence of oxygen. Under anoxic conditions, 13-HOD dehydrogenation was blocked, but addition of 2,6-dichlorophenolindophenol restored it. Sulfite addition fully suppressed the aerobic dehydrogenation of 13-HOD. Hydrogen peroxide is a by-product formed by the enzyme along with 13-KOD. These data suggest that the ketodiene biosynthesis in H. tuberosus tubers is catalyzed by flavin dehydrogenase. (9S,10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid (9-HOD) is dehydrogenated by this enzyme as effectively as 13-HOD, while alpha-ketol, (9Z)-12-oxo-13-hydroxy-9-octadecenoic acid, and ricinoleic acid did not act as substrates for dehydrogenase. The enzyme was soluble and possessed a pH optimum at pH 7.0-9.0. The only 13-HOD dehydrogenase known so far was detected in rat colon. However, unlike the H. tuberosus enzyme, the rat dehydrogenase is NAD-dependent.  相似文献   

4.
The photostability of (E)-2-[3-(2-thioxopyrrolidin-3-ylidene)methyl]-tryptophan ((E)-TPMT), the main yellow pigment in salted radish, was studied. First we analyzed the photoproduct generated from (E)-TPMT under longwave UV irradiation. On the basis of NMR spectroscopy, the photoproduct was identified as Z-configurated TPMT, and isomerization from the Z- to the E-form was reversibly induced by Vis-light irradiation. The optimum wavelength for isomerization from the E- to the Z-form was 360-380 nm, and that for isomerization from the Z- to the E-form was 440-460 nm. The E/Z-ratios in the photostationary state under UV- and Vis-light irradiation conditions were approximately 0.95:1 and 26:1 respectively. The (Z)-isomer was more sensitive to light irradiation than the (E)-isomer in the quantum yield measurement. Yellowing was dependent on the ratio of the (Z)-isomer, because the b(*) and chroma value rose with increases in the (Z)-isomer by the colorimeters. Hence, it is possible that the formation of the (Z)-isomer contribute to the yellow color of takuan-zuke during long salting and fermentation.  相似文献   

5.
Several 1-(alpha-tert-butylcinnamoyl)imidazoles were prepared to examine their fungicidal activity. The (Z)-4-chlorocinnamoyl derivative was prepared from (anti)-2-tert-butyl-3-(4-chlorophenyl)-3-hydroxypropanoic acid by treating with 1,1'-carbonyldiimidazole and a subsequent beta-elimination reaction at an elevated temperature. The (Z)-isomer of the 4-chlorocinnamoyl derivative showed good fungicidal activity against Erysiphe graminis and Botrytis cinerea in pot tests, whereas the corresponding (E)-isomer derived from the (Z)-isomer through photoisomerization was much less active.  相似文献   

6.
A microsomal system catalyzing the in vitro synthesis of the aglycones of the two cyanogenic glucosides linamarin and lotaustralin has been isolated from young etiolated seedlings of cassava (Manihot esculenta Crantz). A prerequisite to obtain active preparations is the complete removal of the endosperm pellicle covering the cotyledons before seedling homogenization. The rates of conversion of the parent amino acids valine and isoleucine to their cyanohydrins are 19 and 6 nmol/h/mg protein, respectively. The conversion rates for the corresponding oximes (2-methylpropanal oxime and 2-methylbutanal oxime) are 475 and 440 nmol/h/mg protein and for the nitriles (2-methylpropionitrile and 2-methylbutyronitrile) 45 and 75 nmol/h/mg protein. With the exception of 2-cyclopentenylglycine, none of the additionally tested amino acids are metabolized, whereas a broad substrate specificity is observed using oximes and nitriles as substrates. The in vitro biosynthesis is photoreversibly inhibited by carbon monoxide, demonstrating the involvement of cytochrome P450 in the hydroxylation processes. All tissues of the cassava seedling contain cyanogenic glucosides. The microsomal enzyme system responsible for their synthesis is restricted to the cotyledons and their petioles. This demonstrates that the cyanogenic glucosides are actively transported to other parts of the seedling. The enzyme activity decreases with the height of the etiolated seedling and is barely detectable in seedlings above 75 mm.  相似文献   

7.
R A Kahn  S Bak  I Svendsen  B A Halkier    B L Mller 《Plant physiology》1997,115(4):1661-1670
A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled.  相似文献   

8.
Stilbenes are bioactive compounds that show beneficial effects for humans, such as anti-tumor activity and survival improvement. Resveratrol, a representative of stilbenes and showing various health-improving activities, is rapidly metabolized in humans, and modified resveratrols are therefore desired as anti-cancer drugs and dietary polyphenols. An Escherichia coli system, in which an artificial stilbene biosynthetic pathway, including steps of phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, and stilbene synthase, was reconstructed, produced stilbenes in high yields: resveratrol from tyrosine and pinosylvin from phenylalanine. To incorporate a stilbene methyltransferase gene into this E. coli system, cDNA of Os08g06100 in Oryza sativa was expressed and its O-methylating activity toward stilbenes was confirmed. Incorporation of the pinosylvin methyltransferase (OsPMT) gene into the pathway established in E. coli led to production of mono- and di-methylated stilbenes. Furthermore, the OsPMT gene turned out to be useful in production of unnatural stilbene methyl ethers due to its rather relaxed substrate specificity; various carboxylic acids supplemented as precursors, such as p-fluorocinnamic acid, 3-(2-furyl)acrylic acid, 3-(2-thienyl)acrylic acid, and 3-(3-pyridyl)acrylic acid, to the E. coli system carrying the steps of 4-coumarate:CoA ligase, stilbene synthase, and OsPMT were converted to stilbene dimethyl ethers with the corresponding carboxylic moiety.  相似文献   

9.
The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin involves N-hydroxytyrosine, (E)- and (Z)-p-hydroxyphenylacetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile as intermediates and has been studied in vitro using a microsomal enzyme system obtained from etiolated sorghum (Sorghum bicolor [L.] Moench) seedlings. The biosynthesis is inhibited by carbon monoxide and the inhibition is reversed by 450 nm light demonstrating the involvement of cytochrome P-450. The combined use of two differently prepared microsomal enzyme systems and of tyrosine, p-hydroxyphenylacetaldehyde oxime, and p-hydroxyphenylacetonitrile as substrates identify two cytochrome P-450-dependent monooxygenases: the N-hydroxylase which converts tyrosine into N-hydroxytyrosine and the C-hydroxylase converting p-hydroxyphenylacetonitrile into p-hydroxymandelonitrile. The inhibitory effect of a number of putative cytochrome P-450 inhibitors confirms the involvement of cytochrome P-450. Monospecific polyclonal antibodies raised toward NADPH-cytochrome P-450-reductase isolated from sorghum inhibits the same metabolic conversions as carbon monoxide. No cytochrome P-450-dependent monooxygenase catalyzing an N-hydroxylation reaction has previously been reported in plants. The metabolism of p-hydroxyphenylacetaldehyde oxime is completely dependent on the presence of NADPH and oxygen and results in the production of p-hydroxymandelonitrile with no accumulation of the intermediate p-hydroxyphenylacetonitrile in the reaction mixture. The apparent NADPH and oxygen requirements of the oxime-metabolizing enzyme are identical to those of the succeeding C-hydroxylase converting p-hydroxyphenylacetonitrile to p-hydroxymandelonitrile. Due to the complex kinetics of the microsomal enzyme system, these requirements may not appertain to the oxime-metabolizing enzyme, which may convert p-hydroxyphenylacetaldehyde oxime to p-hydroxyacetonitrile by a simple dehydration.  相似文献   

10.
《Insect Biochemistry》1989,19(7):645-649
The presence of a pheromone biosynthesis activating neurohormone in the head gandlia, and its effect on the sex phermone biosynthetic pathway, were investigated in the tomato looper, Chrysodeixis chalcites (Esper). Comparison of pheromone components and precursor levels in the presence and absence of the factor was performed using untreated, ligated and ligated and injected virgin females. Pheromone glands of treated and untreated moths were extracted and analyzed by capillary gas chromatography for their most abundant pheromone components, (Z)-7-dodecenyl acetate and (Z)-9-tetradecenyl acetate, and the putative biosynthetic precursors hexadecanoate, (Z)-11-hexadecenoate, (Z)-9-tetradecenoate and (Z)-7-dodecenoate. Comparison of the amounts of the pheromone and precursor components in the three groups of females indicated that a neuroendocrine factor is involved in the regulation of the pheromone biosynthesis in C. chalcites. Lack of such a factor resulted in a marked decrease of the sex pheromone components as well as the three unsaturated putative biosynthetic precursors. However, no decrease was observed in the content of palmitoate, suggesting that the Δ11 desaturation step is affected by the neuroendocrine factor. Injection of head ganglia extracts into ligated females resulted in a recovery of unsaturated precursor and phermone content. Both male and female head ganglia were found to contain a sex pheromone biosynthesis regulatory factor. However, the stimulatory pattern of the factor from the two sexes was different, suggesting that the two factors are quantitatively and/or qualitatively distinct.  相似文献   

11.
Studies of the stereochemistry of the intermediates, 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid and 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid, in the biosynthetic sequence between 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid and cholic acid have been undertaken. (25R)- or (25S)-3 alpha,7 alpha, 12 alpha-Trihydroxy-5 beta-cholestan-26-oic acid was incubated with rat liver homogenates. The reaction products were converted to p-bromophenacyl ester derivatives and the esters were analyzed by high-performance liquid chromatography. By comparison with authentic samples of two (24E)- and (24Z)-isomers of the alpha, beta-unsaturated acid and of four isomers at C-24 and C-25 of the beta-hydroxy acid, (24E)-3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid and (24R,25S)-3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid were found to be formed from either (25R)- or (25S)-3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid. No formation of the (24Z)-isomer of the trihydroxycholestenoic acid or the other three isomers of the tetrahydroxycholestanoic acid was detected. The findings are discussed in relation to the assumed pathway for side chain cleavage in cholic acid biosynthesis.  相似文献   

12.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   

13.
Microsomal preparations from dark-grown Linum usitatissimum (linen flax) seedlings synthesize acetone cyanohydrin, the precursor of the cyanogenic glucoside linamarin, from valine in the presence of NADPH. N-Hydroxyvaline and isobutyraldoxime, which are predicted intermediates in the pathway, are also converted into products. These microsomal preparations also convert isoleucine into 2-butanone cyanohydrin the precursor of lotaustralin. The biosynthetic activity is located exclusively in the developing cotyledons.  相似文献   

14.
The biosynthetic pathway to abscisic acid (ABA) from isopentenyl diphosphate in the fungus, Botrytis cinerea, was investigated. Labeling experiments with (18)O2 and H2(18)O indicated that all oxygen atoms at C-1, -1, -1' and -4' of ABA were derived from molecular oxygen, and not from water. This finding was inconsistent not only with the known carotenoid pathway via oxidative cleavage of carotenoids, but also with the classical direct pathway via cyclization of farnesyl diphosphate. The fungus produced new C15-compounds, 2E,4E-alpha-ionylideneethane and 2Z,4E-alpha-ionylideneethane, along with 2E,4E,6E-allofarnesene and 2Z,4E,6E-allofarnesene, but did not apparently produce carotenoids except for a trace of phytoene. The C15-compounds labeled with 13C were converted to ABA by the fungus, and the incorporation ratio of 2Z,4E-alpha-ionylideneethane was higher than that of 2E,4E-alpha-ionylideneethane. From these results, it was concluded that farnesyl diphosphate was reduced at C-1, desaturated at C-4, and isomerized at C-2 to form 2Z,4E,6E-allofarnesene before being cyclized to 2Z,4E-alpha-ionylideneethane; the ionylideneethane was then oxidized to ABA with molecular oxygen. This direct pathway via ionylideneethane means that the biosynthetic pathway to fungal ABA, not only before but also after isopentenyl diphosphate, differs from that to ABA in plants, since plant ABA is biosynthesized using the non-mevalonate and carotenoid pathways.  相似文献   

15.
It is most generally accepted that the last three enzymatic reactions in the biosynthetic pathway of ecdysone are, in this order, the hydroxylations at positions C-25, C-22 and C-2. Using high specific activity tritiated ecdysone precursors (2,22,25-trideoxyecdysone, 2,22-dideoxyecdysone and 2-deoxyecdysone) we have characterized the hydroxylases involved in these reactions, in the major biosynthetic tissue of ecdysone, i.e. the prothoracic glands. We show that C-2 hydroxylase is a mitochondrial oxygenase which differs from conventional cytochrome P-450-dependent monooxygenases by its relative insensitivity to CO. In contrast, C-22 and C-25 hydroxylases appear as classical cytochrome P-450 monooxygenases; C-22 hydroxylase is a mitochondrial enzyme whereas our data point to a microsomal localization of the C-25 hydroxylase.  相似文献   

16.
In the biosynthetic pathway of Spodoptera littoralis sex pheromone, (E,E)-10,12-tetradecadienoic acid is produced from (Z)-11-tetradecenoic acid by desaturation and concomitant migration of the precursor double bond. With the aim of identifying the enzyme involved in this biotransformation, yeast Deltaelo1/Deltaole mutants, which are both elongase 1 and Delta9 desaturase-deficient, were transformed with the S. littoralis Delta11 desaturase gene using a Cu+2 inducible expression vector. The transformants produced a recombinant polyhistidine-tagged Delta11 desaturase that could be detected by immunoblotting from cell lysates. Lipid analysis revealed that besides producing large quantities of C11-monounsaturated fatty acids, mainly (Z)-11-hexadecenoic acid, (E,E)-10,12-tetradecadienoic acid and minor amounts of (E,Z)-10,12-hexadecadienoic acid were also produced, as well as very low quantities of another tetradecadienoate, which was tentatively identified as the (E,Z)-10,12-tetradecadienoic isomer. None of these dienes was detected with the Delta11 desaturase gene of Trichoplusia ni, which does not produce conjugated dienes as pheromone components. We conclude that the Delta11 desaturase of S. littoralis is a bifunctional enzyme with both Delta11 and Delta10,12 desaturation activities. The relationship between the substrate structure and the stereochemical outcome of the reaction is discussed.  相似文献   

17.
The effect of estradiol administration on renal prostaglandin (PG) E2 biosynthetic activity in rats was studied. A specific radioimmunoassay for PGE2 was developed and applied in the quantitation of PGE2 biosynthesis in kidney. Conversion of exogenous arachidonic acid into PGE2 by renal microsomal fraction was assayed. Formation of PGE2 was linear in fashion up to 5 min incubation at 37 degrees C, and linear in fashion up to 3.5 mg of microsome used as enzyme source. The renal biosynthesis of PGE2 was significantly increased by estradiol treatment.  相似文献   

18.
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone blend, is synthesized from palmitic acid via tetradecanoic acid, which, by the action of a specific (E)-11 desaturase and subsequently a (Z)-9 desaturase, is converted into (Z,E)-9,11-tetradecadienoate. By further reduction and acetylation, this compound leads to the dienne acetate. Deuterated precursors applied to the pheromone gland during the photophase were also incorporated into the pheromone. The percentage of labeled (Z,E)-9,11-tetradecadienyl acetate relative to natural compound was significantly higher during the light period. Label incorporation from different intermediates into the pheromone was stimulated by injection of brain-subesophageal ganglion extract during the photophase. The influence of the pheromone biosynthesis-activating neuropeptide on the biosynthetic pathway is discussed.  相似文献   

19.
Anti-mitotic properties of resveratrol analog (Z)-3,5,4'-trimethoxystilbene   总被引:5,自引:0,他引:5  
(Z)-3,5,4'-Trimethoxystilbene is a natural polyphenol present in five different plants, Virola cuspidata, Virola elongata, Centipeda minima, Schoenus nigricans and Rheum undulatum. This molecule was prepared in a three-step sequence in good overall yield. The isomerisation from the (E)- to (Z)-isomer is performed using UV irradiation. Biological investigations were conducted on a human colon cancer cell line (Caco-2) with anti-mitotic activities. Growth was completely arrested at an added 0.4 microM level of (Z)-3,5,4'-trimethoxystilbene. This agent is 100-fold more active than resveratrol or (E)-3,5,4'-trihydroxystilbene, and the mechanism of this process involves an inhibition of tubulin polymerisation in a dose dependent manner.  相似文献   

20.
An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH. Unpurified cell extract forms both 3(E)-phycocyanobilin, which is identical to the major pigment that is released from phycocyanin by methanolysis, and 3(Z)-phycocyanobilin, which is obtained as a minor methanolysis product. After removal of low molecular weight material from the cell extract, only 3(Z)-phycocyanobilin is formed. 3(E)-Phycocyanobilin formation from biliverdin IX alpha, and the ability to isomerize 3(Z)-phycocyanobilin to 3(E)-phycocyanobilin, are reconstituted by the addition of glutathione to the incubation mixture. Partially purified protein fractions derived from the initial enzyme extract form 3(Z)-phycocyanobilin plus two additional, violet colored bilins, upon incubation with NADPH and biliverdin IX alpha. Further purified protein fractions produce only the violet colored bilins from biliverdin IX alpha. One of these bilins was identified as 3(Z)-phycoerythrobilin by comparative spectrophotometry, reverse-phase high pressure liquid chromatography, and 1H NMR spectroscopy. A C. caldarium protein fraction catalyzes the conversion of 3(Z)-phycoerythrobilin to 3(Z)-phycocyanobilin. This fraction also catalyzes the conversion of 3(E)-phycoerythrobilin to 3(E)-phycocyanobilin. The conversion of phycoerythrobilins to phycocyanobilins requires neither biliverdin nor NADPH. The synthesis of phycoerythrobilin and its conversion to phycocyanobilin by extracts of C. caldarium, a species that does not contain phycoerythrin, indicates that phycoerythrobilin is a biosynthetic precursor to phycocyanobilin. The enzymatic conversion of the ethylidine group from the Z to the E configuration suggests that the E-isomer is the precursor to the protein-bound chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号