首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Human plasma high density lipoproteins (HDL) have been labeled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide (NEM-TEMPO). The spin-labeled HDL exhibited an ESR spectrum containing signals of both strongly immobilized and weakly immobilized components by the reaction with a high concentration of NEM-TEMPO, while an ESR spectrum containing only signals of a strongly immobilized component range between 4 degrees C and 37 degrees C, the signal height of the strongly immobilized component exhibited reversible temperature-dependent changes, whereas that of the weakly immobilized component changed irreversibly at temperatures above 25 degrees C. The activation energy of the irreversible change was estimated to be 26 kcal per mol. The strongly immobilized component was derived from NEM-TEMPO which modified apolipoprotein A-I covalently, while the weakly immobilized component was derived from NEM-TEMPO noncovalently bound to HDL. The rate of binding of NEM-TEMPO to either the strongly binding or weakly binding sites and the number of the strongly binding sites in apolipoprotein A-I were estimated to be 125 M-1.day-1 and 1.78, respectively. The binding of NEM-TEMPO to the strongly binding sites was suppressed greatly by pretreatment of HDL with 2,4,6-trinitrobenzene sulfonic acid (TNBS). The slow reaction and suppression with TNBS suggest that NEM-TEMPO binds to some amino acid residue, probably a lysine residue, in apoprotein A-I. The strongly immobilized and weakly immobilized components were reduced almost completely by ascorbate at the same rate, 0.048 min-1 at pH 7.4 and at 4 degrees C.  相似文献   

2.
N-(1-Oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl)maleimide (MSL) was incorporated into rat liver mitochondria and the nitroxide radical incorporated was found to decay considerably. The incorporation was blocked by a high concentration of NEM, but not by pCMB. Spin labeled fatty acid derivatives, 2-(3-carboxypropyl)-2-tridecyl-4,4-dimethyl-3-oxazolidinyloxyl (FSL1) and 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxyl (FSL2), were also incorporated and the nitroxide radical decayed. However, incorporation of FSL1 or FSL2 was not blocked by NEM or pCMB. The ESR spectrum of 3-carboxyl-2,2,5,5-tetramethyl-pyrroline-1-oxyl (CSL) did not change on reaction with the mitochondria. The labeled MSL exhibited an ESR spectrum composed of both strongly immobilized and weakly immobilized components. A similar reaction with FSL1 gave an ESR spectrum mainly composed of a strongly immobilized component, the weakly immobilized component was negligibly small, while FSL2 exhibited an ESR spectrum in which free-like signals of the nitroxide radical were predominant. The results suggest that MSL is labeled selectively in the mitochondrial membrane through those SH groups that are not reactive to pCMB, and the labeled nitroxide radical is reduced in situ. The mode of incorporation into the mitochondria differs between MSL and the other spin labeled reagents, and labeling of MSL at the binding site may precede reduction of the nitroxide radical. The incorporation of MSL was dependent on the concentration of MSL used. ADP-acceleration of mitochondrial oxygen uptake with succinate was inhibited by labeling the mitochondria with MSL without loss of the electron transferring activity.  相似文献   

3.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

4.
The binding of spin-labeled clofibrate to native and partially delipidated lipoproteins is a rapid, linear and non-saturable process observed up to the critical micellar concentration of the drug. Low-density lipoproteins (LDL) display a lower affinity for the drug than very-low-density lipoproteins (VLDL) and high-density lipoproteins (HDL) relative to their respective specific volume. Unlike various lipophilic drugs, uptake of spin-labeled clofibrate does not correlate with lipoprotein lipid volume. Spin-labeled clofibrate binding to LDL is enhanced when the temperature increases above 25 degrees C. The binding to HDL and VLDL is less temperature-sensitive. The simulation of the ESR spectra has shown that two types of motion should be superimposed for the spin-labeled clofibrate in HDL, in LDL or in partially delipidated LDL. From 40 down to 25 degrees C for HDL and LDL, a fast anisotropic motion is observed. From 25 degrees C down to 5 degrees C, a two-component motion takes place, including a slow isotropic motion of the probe tumbling in a highly hydrophobic environment. Interactions of spin-labeled clofibrate with the apolipoproteins in HDL and LDL are assumed from the emergence of this strongly immobilized component observed when the temperature decreases. In contrast, for spin-labeled clofibrate inserted in the apolar core of VLDL, ESR shows only one component in the whole temperature range (5-40 degrees C). The location of the spin-labeled drug inside the various lipoprotein particles is discussed as a function of temperature.  相似文献   

5.
ESR spin-labeling studies designed to yield information regarding the relationship between function and conformation of rat liver NADPH-cytochrome P450 reductase (EC 1.6.4.2) were carried out. The purified enzyme was spin labeled by a nitroxide derivative of p-chloromercuribenzoate. Two conditions for spin labeling were employed: (i) the presence of NADP+, yielding an active site-protected spin-labeled reductase, and (ii) the absence of NADP+, yielding completely spin-labeled reductase. Reductase in which the active site was protected by binding NADP+ and then spin-labeled retains most of its enzymatic activity; on the other hand, completely spin-labeled reductase is devoid of any enzymatic activity. Completely spin-labeled reductase yields a two-component resolved ESR spectrum that reflects two classes of spin-labeled binding sites, a strongly immobilized (S) and a weakly immobilized (W) site. The ratio of W/S provides a valuable parameter for studying the relationship between function and conformation. Structural perturbants, such as urea, KCl, and pH, were employed to determine their effects on the activity of the enzyme and their relationship to changes in the conformational state of the reductase. It was further observed that the enzymatically active spin-labeled derivative generated superoxide radical in the presence of NADPH and cytochrome c, which in turn reduced completely the attached spin-label.  相似文献   

6.
A Munding  M Drees  K Beyer  M Klingenberg 《Biochemistry》1987,26(26):8637-8644
Binding of spin-labeled maleimides to the mitochondrial ADP/ATP carrier was investigated both in mitochondria and in the detergent-solubilized carrier protein. In mitochondria, spin-label binding to the carrier was evaluated by preincubation with the inhibitor carboxyatractyloside. The membrane sidedness of SH groups in the carrier molecule was determined by chemical reduction of nitroxides on the cytosolic membrane surface by Fe2+ or by pretreatment of the mitochondria with impermeant SH reagents. These experiments suggest that each subunit of the dimeric carrier incorporates one spin-labeled maleimide. Roughly half of the carrier-bound spin-labels were found on either side of the mitochondrial membrane. The detergent-solubilized carrier protein was labeled with a series of maleimide derivatives containing a spacer of increasing length between the maleimide and nitroxide moieties. A total spin-label binding of 2-3 mol/mol of protein dimer, depending on the spin-label length, was found. The electron spin resonance spectra of the spin-labeled protein invariably showed strongly and weakly immobilized components. Increasing the distance of the nitroxide from the maleimide ring resulted in a strong increase of the contribution of the weakly immobilized component. These observations led to the conclusions that the geometrical constraint of spin-label mobility changes at a distance of about 10 A from the maleimide binding site.  相似文献   

7.
P Graceffa  S S Lehrer 《Biochemistry》1984,23(12):2606-2612
Tropomyosin was labeled with a maleimide nitroxide spin-label attached to cysteine-190 via a succinimido ring which was subsequently opened by incubation at alkaline pH. Electron spin resonance (ESR) spectra showed a temperature-dependent equilibrium, below the main unfolding transition of tropomyosin, between labels which were restricted in their motion (strongly immobilized), predominating at low temperatures, and those which were highly mobile (weakly immobilized), predominating at higher temperatures. These label states were associated with two protein states from a comparison of the ESR spectral changes with the thermal unfolding profile of tropomyosin. The strongly immobilized labels were associated with the completely folded molded and the weakly immobilized labels with a partially unfolded (in the cysteine-190 region) state which is an intermediate in the thermal unfolding of tropomyosin. A spectral subtraction technique was used to measure the concentration ratio of strongly and weakly immobilized labels from which an equilibrium constant, K, was determined at different temperatures. A linear van't Hoff plot was obtained, indicating that the spin-labeled protein is in thermal equilibrium between these two conformational states with delta H = 17 kcal/mol, delta S = 56 cal/(deg X mol), and K = 1.0 at 34 degrees C. An upper limit of 10(7) s-1 for the conformational fluctuation was estimated from the shapes and separation of the two ESR spectral components. In contrast to the label with the opened succinimido ring, the spin-label with an intact succinimido ring remained strongly immobilized on the protein, indicating that in the partially unfolded state the molecule retains structure in the cysteine-190 region.  相似文献   

8.
Plasma fibronectin was chemically modified by 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (maleimide spin label). Only the free sulfhydryl groups of plasma fibronectin were modified by the label under the experimental conditions. The ESR spectrum of spin-labeled fibronectin showed that the sites of labeling were highly immobilized, suggesting that the sulfhydryl groups of the protein are in small, confined environments. The conversion of the strongly immobilized ESR spectrum into a weakly immobilized one was observed when the spin-labeled protein was heated from 30 to 60 degrees C, indicating the thermal unfolding of the protein molecules. The midpoint temperature for the thermal unfolding of plasma fibronectin is about 50 degrees C. The results suggest that plasma fibronectin is stable to about 40 degrees C and starts unfolding above this temperature. The rotational correlation time estimated from the ESR spectrum of spin-labeled fibronectin at 21 degrees C was about 2.0 X 10(-8) s. The rotational correlation time calculated from the Stokes-Einstein equation, assuming a rigid globular configuration for fibronectin with a Stokes radius of 10 nm, was about 7.8 X 10(-7) s. The differences in rotational correlation time by a factor of 39 between experimental and calculated values do not support a globular configuration for plasma fibronectin.  相似文献   

9.
P Graceffa 《Biochemistry》1985,24(11):2743-2747
Tropomyosin (TM) exists in thermal equilibrium between a highly structured N state, a partially unfolded X state, and a completely unfolded D state, i.e., N in equilibrium X in equilibrium D. The strongly immobilized electron spin resonance (ESR) spectral component of spin-labeled TM corresponds to TM in the N state and the weakly immobilized component to TM in the X state below the main unfolding transition and to TM in the D state above this transition [Graceffa, P., & Lehrer, S. S. (1984) Biochemistry 23, 2606-2612]. The addition of actin, troponin (TN), and heavy meromyosin (HMM) to spin-labeled TM reduces the ratio of weakly to strongly immobilized labels, indicating a shift in the N in equilibrium X in equilibrium D equilibrium toward the N state. At 37 degrees C, for spin-labeled TM alone K (=X/N) greater than 1.0 with some TM in the D state, K = 0.8 for spin-labeled TM bound to actin, and K less than 0.05 for spin-labeled TM bound to actin + TN +/- Ca2+, actin + HMM + TN +/- Ca2+, and actin + HMM. Thus, actin + TN dramatically shifts the TM structure to the N conformation with little further effect upon addition of Ca2+ or HMM. The temperature at which spin-labeled TM begins to dissociate from a protein complex was determined from the temperature dependence of the ESR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The spin-labeled tryptophan was used as a structural probe of hemoglobin contact sites. The ESR spectral data indicated that the probe exhibits weak binding to hemoglobin with a dissociation constant of 3.2 · 10−5 and 4.0 mol bound per hemoglobin tetramer. The spectrum suggested that the bound tryptophan was ‘partially immobilized’ with a correlation time reflecting the environment of the tryptophan binding site of 8.2 ns. The topology of the contact sites was investigated by using dual spin-label methodology in which spin-labeled tryptophan and (2H,15N) substituted and deuterated maleimide spin label [2H-15N]MSL covalently-bound to Cys-ß93 residue were used. The ESR spectral data suggested that the tryptophan binding sites were located within 8–10Åof the nitroxide free radical of spin-labeled hemoglobin. The environment of the contact sites is discussed.  相似文献   

11.
The interaction of human alpha 1-acid glycoprotein (AAG) with a corticosteroid was studied using nitroxide labeled deoxycorticosterone and electron spin resonance (ESR) spectroscopy. The ESR spectra of the spin labeled steroid in the presence of AAG could be used to characterize the ligand-protein interaction at equilibrium without the need of a separation between bound and free species. An association constant Ka of 6.10(5) M-1 at 20 degrees C and a binding capacity of one site per mole protein were found. ESR spectra recorded at equilibrium at various temperatures allowed the calculation of enthalpy and entropy variations for the steroid-protein interaction; these thermodynamic parameters exhibited a rapid change above 45 degrees C which may be related to a protein conformational modification above this temperature, as detected by circular dichroism study. The ESR spectra width could be used to define a polar character for the spin label environment in the steroid binding site of AAG and to calculate an apparent rotational correlation time of 2.8 x 10(-8) sec for the steroid-protein complex in aqueous solution at 20 degrees C. It can be concluded that spin labeling and ESR methodology is of value in the study of steroid-protein interactions of biological significance above all because it can provide direct physico-chemical information concerning the local environment of the ligand in its binding site at equilibrium.  相似文献   

12.
The binding site topography of progesterone-binding globulin (PBG) purified from pregnant guinea pig serum was examined using synthesized spin-labeled ligands and electron spin resonance (ESR) spectroscopy. A series of deoxycorticosterone-nitroxide (DOC-NO) derivatives were prepared, bearing the free radical on the side chain at increasing distance (d) from the steroid nucleus. The ability of the spin-labeled steroids to specifically bind to PBG was assessed by measurement of their relative binding affinity as compared to progesterone. ESR spectra of the bound steroid nitroxide radical were used to calculate the rotational correlation times tau c for the nitroxides as a function of their distance d to the protein-bound steroid nucleus. The data showed that the side chain nitroxide exhibited an unrestrained rotation in a water-like environment when d reached about 18 A. This would correspond to a PBG steroid binding site depth of about 28 A and suggests that the bound steroid in the PBG site is oriented with the side chain at C-17 directed toward the outside of the protein binding crevice.  相似文献   

13.
The effects of temperature and cholesterol on the membrane fluidity of human erythrocytes were studied using 5-nitroxide stearic acid (5NS), 12-nitroxide stearic acid (12NS), and 16-nitroxide stearic acid (16NS). Human erythrocytes and their lipid vesicles were treated in the range of 5--55 degrees C. In erythrocytes, ESR signals for 12NS and 16NS showed line broadening above 40 degrees C, whereas those for 5NS became sharper with increasing temperature as was the case with the signals of lipid vesicles for each label molecule. Lipid extraction from the heated sample caused no radical reduction. Only in 12NS-labeled erythrocytes did a weakly immobilized component and a strongly immobilized component appear. In the time course at 50 degrees C, the former decreased and the latter remained constant. From the ratio of both components, it was found that the interaction of the label molecules with the binding sites was determined by the physical state of the membrane. Furthermore, the dependence on temperature of the molecular motion of the labels in the cell membrane was irreversible above 40 degrees C. On addition of cholesterol to the membrane, the outer hyperfine splittings for 12NS and 16NS increased but that for 5NS decreased at C/P greater than 1, perhaps indicating a spread between the head groups of phospholipids by cholesterol.  相似文献   

14.
The ratio of low-field amplitudes of weakly and strongly immobilized signals of ESR spectra of a maleimide spin label bound to erythrocyte membranes (hw/hs) increases progressively during incubation at 37 degrees C. This increase is due to the 'self-digestion' of membrane proteins by endogenous proteinases and is attenuated by proteinase inhibitors. Digestion of membranes with chymotrypsin also increases the hw/hs ratio. These results suggest a need for a careful interpretation of data from spin-labeled membrane proteins, especially in experiments involving prolonged incubations of membrane preparations when the proteolytic effects may be significant.  相似文献   

15.
Two spin-labeled analogues of AMP and NAD+ were synthesized, in which a perdeuterated nitroxide radical (4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPAMINE) was attached to C-6 or C-8 position of the adenine ring. The ESR spectra of these derivatives exhibit a 4-fold increase in sensitivity and a concomitant decrease in line-width as compared to the corresponding protonated analogues. The improved resolution of composite spectra consisting of freely tumbling and immobilized components is demonstrated in ternary complexes of the spin-labeled NAD+ derivatives with lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) and oxalate.  相似文献   

16.
The spin-labeled tryptophan was used as a structural probe of hemoglobin contact sites. The ESR spectral data indicated that the probe exhibits weak binding to hemoglobin with a dissociation constant of 3.2.10(-5) and 4.0 mol bound per hemoglobin tetramer. The spectrum suggested that the bound tryptophan was 'partially immobilized' with a correlation time reflecting the environment of the tryptophan binding site of 8.2 ns. The topology of the contact sites was investigated by using dual spin-label methodology in which spin-labeled tryptophan and (2H,15N) substituted and deuterated maleimide spin label [2H-15N]MSL covalently-bound to Cys-beta 93 residue were used. The ESR spectral data suggested that the tryptophan binding sites were located within 8-10 A of the nitroxide free radical of spin-labeled hemoglobin. The environment of the contact sites is discussed.  相似文献   

17.
Permeation of molecular oxygen in rhodopsin, an integral membrane protein, has been investigated by monitoring the bimolecular collision rate between molecular oxygen and the nitroxide spin label using a pulse electron spin resonance (ESR) T1 method. Rhodopsin was labeled by regeneration with the spin-labeled 9-cis retinal analogue in which the beta-ionone ring of retinal is replaced by the nitroxide tetramethyl-oxypyrrolidine ring. The bimolecular collision rate was evaluated in terms of an experimental parameter W(x), defined as T1(-1)(air,x)--T1(-1)(N2,x) where T1's are the spin-lattice relaxation times of the nitroxide in samples equilibrated with atmospheric air and nitrogen respectively, which is proportional to the product of local oxygen concentration and local diffusion coefficient (transport). W-values at the beta-ionone binding site in spin-labeled rhodopsin are in the range of 0.02-0.13 microseconds-1, which are 10-60 times smaller than W's in water and 1.1-20 times smaller than in model membranes in the gel phase, indicating that membrane proteins create significant permeation resistance to transport of molecular oxygen inside and across the membrane. W(thereby the oxygen diffusion-concentration product) is larger in the meta II-enriched sample than in rhodopsin, indicating light-induced conformational changes of opsin around the beta-ionone binding site. W decreases with increase of temperature for both rhodopsin and meta II-enriched samples, suggesting that temperature-induced conformational changes take place in both samples. These changes were not observable using conventional ESR spectroscopy. It is concluded that W is a sensitive monitor of conformational changes of proteins.  相似文献   

18.
Human erythrocyte ghosts were covalently labeled with 4-maleimide-2,2,6,6-tetramethylpiperidinooxyl. Electron paramagnetic resonance (EPR) spectrometry revealed two major binding environments representing strongly (S) and weakly (W) immobilized species. The disorder parameter, W/S, determined from the respective peak amplitudes, was shown to be irreversibly elevated following treatment of the labeled ghosts with superoxide, indicating an increase in membrane fluidity. Labeled ghosts reduced with ascorbate showed no nitroxide EPR signals. However, following exposure of these membranes to superoxide, the nitroxide spectrum returned with a W/S ratio of 25. In contrast, the disorder parameter for spin-labeled ghosts decreased following exposure to hydroxyl radicals suggesting decreased fluidity, as a result of lipid peroxidation. This effect could be prevented by the inclusion of mannitol. These changes in membrane fluidity and/or protein mobility observed by EPR are compared with previous results obtained by other methods and provide additional evidence for physiologic alterations initiated by superoxide.  相似文献   

19.
Phthalocyanines (Pc), which are extensively studied as tumor localizing photosensitizers for photodynamic therapy, are transported by the blood circulatory system to target tissues. Binding interactions between human serum albumin and differently sulfonated aluminum phthalocyanines (AlPcSn; n = 1-4) were studied using optical and ESR spectroscopy. AlPcSn (n = 1-3) occupy one strong binding site and eight weaker sites. The high affinity binding site interactions differ with respect to the degree of sulfonation and isomeric composition of the Pc. Phthalocyanines without SO-3 groups on adjacent iso-indole rings exhibit a high affinity binding site constant of K approximately 3-4 x 10(7) M-1, while Pc with two or three adjacent SO-3 groups show binding for this high affinity site that is no longer independent, but cooperative (alpha = 2), with K approximately 2-6 x 10(6) M-1. Binding isotherms for AlPcS4 and its close analog, tempoyl spin-labeled SL-AlPcS3, do not approach saturation at high ligand concentrations. Competition analyses between AlPcSn and spin-labeled fatty acids (5- and 16-doxyl stearate isomers) reveal that all compounds participate in cooperative (allosteric) interactions with the high affinity binding site of 16-DS, while extruding 5-DS isomer from certain sites and increasing the binding affinity for the remaining. Protein conformational dynamics was studied by ESR spectroscopy using covalent (alkylation of Cys34 residue) and noncovalent spin labeling (employing SL-AlPcS3). Phthalocyanines perturb conformational dynamics parameters (tauc and S) depending on the degree of sulfonation and isomeric composition corresponding to the type of sites, i.e., independent or cooperative, occupied on the HSA molecule.  相似文献   

20.
The interaction of VERO cell monolayers with spin (nitroxide)-(labeled polynucleotides (1(N)n) was examined by electron spin resonance (ESR) spectroscopy at various temperatures. Nitroxide labels covalently linked to (A)n, (dUfl)n, (U)n and (A)n . (U)n were used to monitor the interaction. The VERO cells were grown on small quartz plates with a cell viability of 95% or better and then used directly for the ESR studies. The ESR results indicated that the interaction between VERO cells and spin-labeled nucleic acids is temperature dependent. No temperature dependence was found when VERO cells were in contact with nitroxide radicals which were free in solution or covalently bound to Sepharose 4B. The temperature dependence established with nitroxide-labeled nucleic acids indicates that a temperature barrier must exist between 20 and 26 degrees C for the interaction between nucleic acids and VERO cells; namely, at 26 degrees C or above spin-labeled nucleic acids interact significantly with a VERO cell surface; whereas, at 20 degrees C the ESR signal reports no interaction. It is concluded that a temperature-dependent phase transition of membrane components or cell surface products active at 26 degrees C or above play a key role in the nucleic acid cell surface interaction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号