首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of UV irradiation on the survival, inter- and intragenic mitotic recombination of 3 diploid UV sensitive Saccharomyces mutants was studied and compared with the wild type RAD. These strains, homozygous for either the RAD, r1s rad 9-4, or rad 2-20 gene, have DRF values for survival of 1:1.6:3:20.6 respectively, at LD1. Their recombination behaviour is not correlated to their survival characteristics. The RAD, r1s, and rad 2-20 strains showed UV induced mitotic inter- and intragenic recombinants; the induction in the r1s diploid is ca. 100 times greater for both the inter- and intragenic recombinants than in the RAD strain. The rad 9-4 diploid produced no UV induced mitotic recombinants whatsoever, and is therefore considered to be a rec- mutation.  相似文献   

2.
Concentrated dialysate of the extract prepared from barley seeds treated with sodium azide increased up to 100--200 times the frequency of forward mutations to cycloheximide resistance in the excision-deficient UV-sensitive heploid strain rad2-5 of Saccharomyces cerevisiae, when applied to growing cells in complete medium at pH 4.2. Only a slight increase of mutation frequency (less than 4 times) was found in the haploid RAD+ strain treated in the same way as well as in haploid RAD+ and rad2-5 strains treated directly by sodium azide. In contrast with the barley-activated sodium azide, UV irradiation was more effective in the induction of cycloheximide resistance in the RAD+ strain than in the RAD2-5 mutant. The dialysate from azide-treated barley seeds, applied at both pH 4.2 and pH 9, also significantly increased the frequency of locus-specific suppressor mutations to isoleucine independence and -- to a lesser extent -- reversions and/or gene conversions in the trp5 locus in growing cells of the diploid strain D7. The dialysate was also mutagenic in resting cells of strains D7 and rad2-5 but with lower effectiveness.  相似文献   

3.
4.
The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.  相似文献   

5.
Inducible error-prone repair in yeast. Suppression by heat shock   总被引:1,自引:0,他引:1  
The production of reversion mutations in wild-type, diploid Saccharomyces cerevisiae by the alkylating agents N-methyl-N'-nitro- N-nitrosoguanidine (MNNG) and methylnitrosourea (MNU) was suppressed in cells previously treated with a heat shock, or the protein synthesis inhibitor, cycloheximide. The same cells previously treated with a heat shock, or the protein synthesis inhibitor, cycloheximide. The same treatment after mutagen exposure did not lower the induced mutation frequency. In split-dose experiments, a first MNNG exposure prevented subsequent heat (or cycloheximide) treatment from blocking mutation by a second, later mutagen exposure. These data suggest that, in yeast, MNNG or MNU induces an error-prone DNA-repair system, and that this induction is blocked by protein-synthesis inhibitors. The specificity of this system for different types of DNA damage was investigated using a variety of other mutagenic agents. A prior heat shock did not suppress mutation produced by exposure to ethyl methanesulfonate, ethylnitrosourea, 8-methoxypsoralen + UVA, or gamma-radiation. Partial suppression was observed in cells exposed to methyl methanesulfonate or to 254-nm ultraviolet light. These results indicate that, unlike the SOS system of E. coli, this inducible error-prone process of yeast is responsive to only certain mutagens. Heat shock suppression of mutation produced by MNNG exposure was also demonstrated in wild-type haploid cells, as well as haploid strains mutant in representative genes of the RAD52 epistasis group (rad52, rad53, rad54), the RAD3 epistasis group (rad1, rad2, rad3) and the RAD6 epistasis group (rad9, rad18). The rad6 mutant itself was immutable with MNNG and therefore untestable by these techniques. These data indicate that this error-prone repair system is not absolutely dependent on the integrity of the RAD52 (recombination) or the RAD3 (excision) systems, or on at least some parts of the RAD6 system.  相似文献   

6.
I V Fedorova  S V Marfin 《Genetika》1982,18(2):207-214
The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.  相似文献   

7.
Using the CAN1 gene in haploid cells or heterozygous diploid cells, we characterized the effects of mutations in the RAD52 and REV3 genes of Saccharomyces cerevisiae in spontaneous mutagenesis. The mutation rate was 5-fold higher in the haploid rad52 strain and 2.5-fold lower in rev3 than in the wild-type strain. The rate in the rad52 rev3 strain was as low as in the wild-type strain, indicating the rad52 mutator phenotype to be dependent on REV3. Sequencing indicated that G:C-->T:A and G:C-->C:G transversions increased in the rad52 strain and decreased in the rev3 and rad52 rev3 strains, suggesting a role for REV3 in transversion mutagenesis. In diploid rev3 cells, frequencies of can1Delta::LEU2/can1Delta::LEU2 from CAN1/can1Delta::LEU2 due to recombination were increased over the wild-type level. Overall, in the absence of RAD52, REV3-dependent base-substitutions increased, while in the absence of REV3, RAD52-dependent recombination events increased. We further found that the rad52 mutant had an increased rate of chromosome loss and the rad52 rev3 double mutant had an enhanced chromosome loss mutator phenotype. Taken together, our study indicates that the error-free RAD52 pathway and error-prone REV3 pathway for rescuing replication fork arrest determine spontaneous mutagenesis, recombination, and genome instability.  相似文献   

8.
Anderson WW  Brown CJ 《Genetics》1984,107(4):577-589
Inbred diploid yeast strains heterozygous or homozygous for the rad18-2 allele and carrying markers for detection of mitotic recombination were constructed. The homozygous rad18-2/rad18-2 strain was highly sensitive to killing by UV light, showed greatly elevated frequencies of spontaneous and induced mitotic recombination and was more sensitive to trimethoprim than the wild-type diploid. The heterozygous strain RAD18/rad18-2 was intermediate in its response for these same phenotypic characters. These findings are discussed in the light of other studies in which incomplete dominance of genes involved in some aspect of DNA repair has been reported.  相似文献   

9.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

10.
Fasullo M  Dong Z  Sun M  Zeng L 《DNA Repair》2005,4(11):1240-1251
Saccharomyces cerevisiae RAD53 (CHK2) and CHK1 control two parallel branches of the RAD9-mediated pathway for DNA damage-induced G(2) arrest. Previous studies indicate that RAD9 is required for X-ray-associated sister chromatid exchange (SCE), suppresses homology-directed translocations, and is involved in pathways for double-strand break repair (DSB) repair that are different than those controlled by PDS1. We measured DNA damage-associated SCE in strains containing two tandem fragments of his3, his3-Delta5' and his3-Delta3'::HOcs, and rates of spontaneous translocations in diploids containing GAL1::his3-Delta5' and trp1::his3-Delta3'::HOcs. DNA damage-associated SCE was measured after log phase cells were exposed to methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), UV, X rays and HO-induced DSBs. We observed that rad53 mutants were defective in MMS-, 4-NQO, X-ray-associated and HO-induced SCE but not in UV-associated SCE. Similar to rad9 pds1 double mutants, rad53 pds1 double mutants exhibited more X-ray sensitivity than the single mutants. rad53 sml1 diploid mutants exhibited a 10-fold higher rate of spontaneous translocations compared to the sml1 diploid mutants. chk1 mutants were not deficient in DNA damage-associated SCE after exposure to DNA damaging agents or after DSBs were generated at trp1::his3-Delta5'his3-Delta3'::HOcs. These data indicate that RAD53, not CHK1, is required for DSB-initiated SCE, and DNA damage-associated SCE after exposure to X-ray-mimetic and UV-mimetic chemicals.  相似文献   

11.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

12.
Excision of interstrand DNA cross-links induced by 4,5',8-trimethyl psoralen plus 360-nm light was examined in wild type (RAD+) and various radiation-sensitive (rad) mutants of Saccharomyces cerevisiae known to be defective in the excision of UV light-induced pyrimidine dimers. Alkaline sucrose sedimentation of DNA after incubation of psoralen-plus-light-treated cells indicated little or no nicking of cross-linked DNA in rad1-2, rad2-5, rad3-2, rad4-4, rad10-2, and mms19-1 mutants. In the rad14-2 mutant, substantial nicking was observed but to a much lesser extent than in the RAD+ strains, whereas the rad16-1 mutant was as proficient in nicking as the RAD+ strain. Removal of cross-links was also examined in RAD+, rad3-2, and rad14-2 strains by determining the sensitivity of alkali-denatured and -neutralized DNA to hydrolysis by S1 nuclease. No cross-link removal was observed in the rad3-2 mutants, and the rad14-2 mutant was much less efficient than the RAD+ strain in removing cross-links.  相似文献   

13.
14.
Stannous chloride was found genotoxic in microbial test systems of the yeast Saccharomyces cerevisiae, in one strain of Salmonella typhimurium and in the Mutoxitest of Escherichia coli. Five isogenic haploid yeast strains differing only in a particular repair-deficiency had the following ranking in Sn2+ -sensitivity: rad52delta>rad6delta>rad2delta>rad4delta>RAD, indicating a higher relevance of recombinogenic repair mechanisms than nucleotide excision in repair of Sn2+ -induced DNA damage. Sn2+ -treated cells formed aggregates that lead to gross overestimation of toxicity when not undone before diluting and plating. Reliable inactivation assays at exposure doses of 25-75 mM SnCl2 were achieved by de-clumping with either EDTA- or phosphate buffer. Sn2+ -induced reversion of the yeast his1-798, his1-208 and lys1-1 mutant alleles, in diploid and haploid cells, respectively, and putative frameshift mutagenesis (reversion of the hom3-10 allele) was observed. In diploid yeast, SnCl2 induced intra-genic mitotic recombination while inter-genic (reciprocal) recombination was very weak and not significant. Yeast cells of exponentially growing cultures were killed to about the same extend at 0.1% of SnCl2 than respective cells in stationary phase, suggesting a major involvement of physiological parameters of post-diauxic shift oxidative stress resistance in enhanced Sn2+ -tolerance. Superoxide dismutases, but not catalase, protected against SnCl2-induced reactive oxygen species as sod1delta had a three-fold higher sensitivity than the WT while the sod2delta mutant was only slightly more sensitive but conferred significant sensitivity increase in a sod1delta sod2delta double mutant. In the Salmonella reversion assay, SnCl2 did not induce mutations in strains TA97, TA98 or TA100, while a positive response was seen in strain TA102. SnCl2 induced a two-fold increase in mutation in the Mutoxitest strain IC203 (uvrA oxyR), but was less mutagenic in strain IC188 (uvrA). We propose that the mutagenicity of SnCl2 in yeast and bacteria occurs via error-prone repair of DNA damage that is produced by reactive oxygen species.  相似文献   

15.
16.
L. C. Kadyk  L. H. Hartwell 《Genetics》1993,133(3):469-487
Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination.  相似文献   

17.
Louise Prakash 《Genetics》1974,78(4):1101-1118
Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.  相似文献   

18.
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.  相似文献   

19.
TheRAD6 gene is a multifunctional gene required for DNA repair, induced mutagenesis and sporulation. The survival and revertibility of two loci in fourrad6-1 mutant strains of different origin after UV irradiation were followed. As expected, all therad6-1 strains tested were more sensitive to UV radiation in comparison withRAD6 strains. The reversion frequency per survivor intrpl-289 andarg4–17 alleles was significantly higher in all fourrad6-1 mutant strains than in wild-type strains after equal doses of UV radiation. On the basis of genetic analysis we suggest that the phenomenon of increased frequency of induced mutagenesis is caused by a suppressor gene.  相似文献   

20.
rad5 (rev2) mutants of Saccharomyces cerevisiae are sensitive to UV light and other DNA-damaging agents, and RAD5 is in the RAD6 epistasis group of DNA repair genes. To unambiguously define the function of RAD5, we have cloned the RAD5 gene, determined the effects of the rad5 deletion mutation on DNA repair, DNA damage-induced mutagenesis, and other cellular processes, and analyzed the sequence of RAD5-encoded protein. Our genetic studies indicate that RAD5 functions primarily with RAD18 in error-free postreplication repair. We also show that RAD5 affects the rate of instability of poly(GT) repeat sequences. Genomic poly(GT) sequences normally change length at a rate of about 10(-4); this rate is approximately 10-fold lower in the rad5 deletion mutant than in the corresponding isogenic wild-type strain. RAD5 encodes a protein of 1,169 amino acids of M(r) 134,000, and it contains several interesting sequence motifs. All seven conserved domains found associated with DNA helicases are present in RAD5. RAD5 also contains a cysteine-rich sequence motif that resembles the corresponding sequences found in 11 other proteins, including those encoded by the DNA repair gene RAD18 and the RAG1 gene required for immunoglobin gene arrangement. A leucine zipper motif preceded by a basic region is also present in RAD5. The cysteine-rich region may coordinate the binding of zinc; this region and the basic segment might constitute distinct DNA-binding domains in RAD5. Possible roles of RAD5 putative ATPase/DNA helicase activity in DNA repair and in the maintenance of wild-type rates of instability of simple repetitive sequences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号