首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A female with infant was chosen as material for study in an attempt to assess the nutritional condition of free ranging Japanese monkeys during winter. Her daily food composition, dry weight intake and nutritional (protein, lipid, carbohydrate, ash and calorie) intake were measured monthly (October to March). About 90% and 8% of the autumn diet consisted of fruits and invertebrate animals, respectively, while 70% of the winter diet (February) consisted of leaves of evergreen trees. Comparing the daily protein intake of this focal female with the requirement level estimated from references, only October and November represented months fulfilling this level. Also, there was a remarkable decrease in lipid intake towards winter. These results coincided well with the observed body weight loss in the female and the increasing feeding activity of her baby towards winter. It is suggested that such seasonal malnutrition of the mother might affect population parameters such as the infant mortality.  相似文献   

2.
Reproduction in round-eared elephant shrews occurred throughout the year. Male round-eared elephant shrews were spermatogenically active, with spermatozoa stored in the cauda epididymes, throughout the year. Pregnant females occurred in all months except March and May and there was a decline in the occurrence of pregnancies during early winter (March-July). This tendency towards seasonality of pregnancies was mirrored by the appearance of juveniles, with 77% of all young animals caught between September and February. Bone calcium concentrations were significantly lower during the dry winter than during summer. From October onwards (the beginning of the wet season), bone calcium concentrations increased, reaching high levels in December which were maintained until April. This increase in bone calcium concentrations coincided with the rainy season and with an increase in the intake of herbage, and during this period 60% of all pregnancies occurred. We conclude that the ability of the round-eared elephant shrew to vary its diet may allow some individuals to breed throughout the year. The reduction in the occurrence of pregnancies in early winter probably ensures that few births occur when bone calcium concentrations are low.  相似文献   

3.
The night monkeys (Aotus azarai) of Formosa, Argentina provide an opportunity to investigate the influences of ambient temperature and photoperiod on reproduction in a highly seasonal environment: the Chaco. Between 1997 and 2000, we collected data to evaluate the relationship between rainfall, ambient temperature, photoperiod and food availability and the annual distribution of mating behavior and births in 15 groups of monkeys in the forests of the Eastern Argentinean Chaco. Our data show that the area is highly seasonal, characterized by significant fluctuations in rainfall, temperature, photoperiod and food availability. There are two rain peaks in April and November and a dry season lasting from June to August. Monthly mean temperatures were on average 11°C lower during winter months than they were during summer months. Temperatures <10°C and >33°C were also frequent through the year. Days are 3 h longer during the summer than during the winter months. Insect abundance and the percentage of tree species producing fruits, flowers or new leaves reached a low in the coldest winter months. Mating was infrequent, and we only observed it between May and September. Half the births (n = 13) occurred during a 2-week period in October. Infant survival during the first 6 mo of life was high (96%). Our findings suggest an environmental control of reproduction. Changes in photoperiod and temperature may promote reproductive activity in females that might conceive and begin pregnancy at a time void of high temperatures that could be metabolically challenging.  相似文献   

4.
觅食是获取营养物质和能量的重要途经。对于栖息在四季分明地区的灵长类动物而言,低温以及食物资源相对匮乏的冬季是其生存和生长发育的瓶颈期。本研究以安徽黄山的野生藏酋猴(Macaca thibetana)天湖山群为对象,于2019年11月至2020年1月采用瞬时扫描取样法(Instantaneous scan sampling)采集猴群觅食行为数据,并分析其冬季食物组成及食物中各化学成分含量对取食的影响。结果显示,野生藏酋猴在冬季共取食23科31属34种植物,主要包括壳斗科(Fagaceae, 21.62%)、樟科(Lauraceae, 17.57%)、蔷薇科(Rosaceae, 8.11%)的植物,取食部位以叶片(66.22%)和果实(种子)(24.32%)为主。不同取食部位的水分、总糖、淀粉、脂肪、单宁等成分存在显著差异。其中,叶片的水分含量高于果实(种子)、茎和芽,茎和果实(种子)含有较高的总糖,果实(种子)的淀粉和脂肪含量最高,芽的单宁含量最高。此外,取食植物中的总糖含量高于非取食植物。结果表明,野生藏酋猴适应寒冷冬季与食物匮乏的觅食策略是对植物种类、植物部位及其主要营养成分的综合结...  相似文献   

5.

The incidence of banana aphid, Pentalonia nigronervosa Coqueral and the coccinellid predators populations on banana plants cultivated at the Agricultural Research Centre Farm in El-Kanater El-Khayria, Qualiobia Governorate, Egypt (about 30 km North Cairo) had been studied. The population of this insect pest was relatively high during the cold and wet months (October, November, December, January and February), and found at its lowest level during the summer months. On the other hand, the numbers of aphid were higher on the mother plants than on the suckers. On mother plants, the population density was much higher on the lower parts of the plant than on the upper parts. The growth rate of aphid population infesting the mother plant of banana in season 2001, increased during the period from January to March and decreased from April to June. The population growth rate then increased from July to November then decreased in December. The same trend could be applied for the growth rate of aphid population in season 2002. At high growth rate it is advisable to use chemical control. The effect of weather factors on the population density of the banana aphid; the correlation between the total number of aphid and temperature or R.H. had been worked out. The coccinellid beetles were found on the banana plants during the warm period from March to August.  相似文献   

6.
Information on the use of space, activity patterns, diet, and social interactions were recorded for a group of woolly monkeys (Lagothrix lagotricha) during 13 months at Tinigua National Park, Macarena, Colombia. In this region, fruit abundance changes throughout the year with a peak during March–April (beginning of the rainy season) and less fruit during September-November (end of rainy season). Woolly monkeys spent most of their time in mature forest where fruit abundance is higher than in opendegraded or flooded forests. Changes in habitat used by monkeys were coupled with changes in fruit supply across vegetation types. On an annual basis, woolly monkeys spent 24% of point samples locomoting, 36% resting, 36% feeding, and 4% on other activities. However, these proportions varied across the year depending on fruit availability. Based on instantaneous samples, the diet consisted mostly of fruits (60%), arthropods (23%), vegetative parts and flowers (17%), and other items (1%). Non-lactating females and juveniles spent more time eating insects than adult males and lactating females; however, significant differences between classes were detected only during the period of fruit scarcity. These differences are probably due to the high extent to which non-lactating females and juveniles were excluded from fruiting trees by males. The high proportion of arthropods in their diet is unusual for primates with large body size and is a possible factor influencing group cohesiveness in woolly monkeys. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Menstrual cycle characteristics of seasonally breeding rhesus monkeys   总被引:1,自引:0,他引:1  
Rhesus monkeys in seminatural environments exhibit a distinct seasonal mating cycle with conceptions restricted to the fall and winter months. In the present study, the characteristics of menstrual cycles were examined during a 1-year period in twelve rhesus monkeys in whom pregnancy was prevented. Menses occurred throughout the year, but ovulations were observed only in the fall and winter months. Menses in the spring and summer months occurred irregularly and were associated exclusively with anovulatory cycles. The total number of ovulations exhibited by these females during the breeding season ranged from two to six and was positively related to body weight, mean luteal phase progesterone (P) levels of normal cycles and social dominance rank. Ovulations with a short luteal phase were exhibited by four females (seven cycles), with the likelihood of occurrence increasing as the breeding season progressed. The incidence of abnormal cycles was predicted from the linear combination of parity, body weight and luteal phase P of normal ovulatory cycles. These results suggest that during the seasonally delimited period of ovulation, females exhibit a range in the quality and quantity of ovulations which may be predicted by certain idiosyncratic physical and behavioral traits.  相似文献   

8.
2005 ~2008 年于陕西省青木川自然保护区使用瞬时扫描法观察了川金丝猴的食性。结果表明,川金丝猴冬季和夏季共取食42 种植物,可鉴定植物归属23 科34 属。川金丝猴食物类型包括果实、花、树叶、树皮、树芽。夏季取食21 种植物的果实或树叶;冬季取食25 种植物。树叶是其冬季主要食物,取食频次占总取食频次的73.0% ;夏季取食果实的频次占总取食频次的72.2% ,灯台树果实是其主要食物。啃食树皮行为主要发生在落叶阔叶林、针叶林与落叶阔叶混交林;在常绿和落叶阔叶混交林中,树皮啃食强度则相对较小。与其它地区金丝猴的食性比较,该地区川金丝猴食物谱较宽。蔷薇科和壳斗科植物在川金丝猴食物组成中最多,杨柳科、桦木科、山茱萸科、槭树科和忍冬科植物也取食较多。  相似文献   

9.
2013年3月至2014年2月,在秦岭南坡观音山自然保护区大坪峪颜家沟内选取一群半野生川金丝猴的成年个体作为研究对象,采用瞬时扫描取样法收集其觅食的食物类型数据,目的是为该猴群建立食谱,并通过对比不同季节内觅取的食物组成差异探讨秦岭南坡川金丝猴如何应对喜食食物的季节性缺乏。结果表明:秦岭南坡川金丝猴共采食53种植物(包括34种乔木、13种灌木、6种藤本植物)和4种大型真菌,分别占取食植物组成的64.3%、25.3%、8.0%和2.2%,春、夏、秋、冬季节取食种类和多样性指数分别为20种(3.93)、19种(3.73)、21种(3.87)和25种(4.12)。在秦岭南坡川金丝猴的食物组成中,地衣占总觅食记录的22%;树叶占20%,其中嫩叶9%和成熟叶11%;种子、树皮、芽苞、果实和叶柄分别占16%、15%、11%、 9%和7%。该猴群觅取的植物部位具有明显的季节性差异。春季,对树皮和芽苞的觅食量较高,分别为28%和25%;夏季,增加了对成熟叶的采食量(29%),而减少了芽苞的觅取量(5%);秋季,以取食种子和果实为主,分别占总觅食的48% 和16%;冬季,地衣的采食量达到最大值(41%)。觅食的食物组成与食物的可获得性呈正相关性(R = 0.984, P < 0.01),这与大多数叶猴的适应策略类似,在喜食食物短缺的冬季,它们选择更多的地衣和树皮为食,同时它们采食的种类和食物多样性也有相应增加。  相似文献   

10.
Regular counts of the eggs ofCulex quinquefasciatus Say were recorded during the period April 1979 – March 1981. The results indicate that the lowest numbers of eggs laid were during summer months (May and June) and the highest ones were during winter months (November and January). The decline of numbers during summer was mainly due to small size of adults (0.57 mg, average wt of female). Populations flourished during the rainy season (July – October) and reached their peak in August. Bigger batches of eggs were then obtained. In winter prolongation of larval life gave rise to large-sized adults and hence bigger batches of eggs.  相似文献   

11.
Only a few primate species thrive in temperate regions characterized by relatively low temperature, low rainfall, low species diversity, high elevation, and especially an extended season of food scarcity during which they suffer from dietary stress. We present data of a case study of dietary strategies and fallback foods in snub-nosed monkeys (Rhinopithecus bieti) in the Samage Forest, Northwest Yunnan, PRC. The snub-nosed monkeys adjusted intake of plant food items corresponding with changes in the phenology of deciduous trees in the forest and specifically showed a strong preference for young leaves in spring. A non-plant food, lichens (Parmeliaceae), featured prominently in the diet throughout the year (annual representation in the diet was about 67%) and became the dominant food item in winter when palatable plant resources were scarce. Additional highly sought winter foods were frost-resistant fruits and winter buds of deciduous hardwoods. The snub-nosed monkeys' choice of lichens as a staple fallback food is likely because of their spatiotemporal consistency in occurrence, nutritional and energetic properties, and the ease with which they can be harvested. Using lichens is a way to mediate effects of seasonal dearth in palatable plant foods and ultimately a key survival strategy. The snub-nosed monkeys' fallback strategy affects various aspects of their biology, e.g., two- and three-dimensional range use and social organization. The higher abundance of lichens at higher altitudes explains the monkeys' tendency to occupy relatively high altitudes in winter despite the prevailing cold. As to social organization, the wide temporal and spatial availability of lichens strongly reduces the ecological costs of grouping, thus allowing for the formation of “super-groups.” Usnea lichens, the snub-nosed monkeys' primary dietary component, are known to be highly susceptible to human-induced environmental changes such as air pollution, and a decline of this critical resource base could have devastating effects on the last remaining populations. Within the order Primates, lichenivory is a rare strategy and only found in a few species or populations inhabiting montane areas, i.e., Macaca sylvanus, Colobus angolensis, and Rhinopithecus roxellana. Other temperate-dwelling primates rely mainly on buds and bark as winter fallback foods. Am J Phys Anthropol 140:700–715, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

12.
Multiple factors determine diet selection of herbivores. However, in many diet studies selection of single nutrients is studied or optimization models are developed using only one currency. In this paper, we use linear programming to explain diet selection by African elephant based on plant availability and nutrient and deterrent content over time. Our results indicate that elephant at our study area maximized intake of phosphorus throughout the year, possibly in response to the deficiency of this nutrient in the region. After adjusting the model to incorporate the effects of this deficiency, elephant were found to maximize nitrogen intake during the wet season and energy during the dry season. We reason that the increased energy requirements during the dry season can be explained by seasonal changes in water availability and forage abundance. As forage abundance decrease into the dry season, elephant struggle to satisfy their large absolute food requirements. Adding to this restriction is the simultaneous decrease in plant and surface water availability, which force the elephant to seek out scarce surface water sources at high energy costs. During the wet season when food becomes more abundant and energy requirements are satisfied easier, elephant aim to maximize nitrogen intake for growth and reproduction. Our study contributes to the emerging theory on understanding foraging for multiple resources.  相似文献   

13.
2000年6~11月对苏格兰拉姆岛上野化山羊(Capra hircus)种群的取食生态学进行了研究.研究表明:山羊的觅食回合长度变化范围从1min到460 min不等,平均觅食回合长度是103.1±15.0 (SD)min,雌性动物的觅食回合长度较雄性的长(P=0.077).野化山羊单位时间的取食频率平均为46.3±0.6 口/min,取食频率随性别(P=0.023)和月份(P<0.001)而显著变化.雄性山羊在繁殖交配之前(6~7月)和之后(10~11月)的取食频率比繁殖交配期中(9~10月)的快(P<0.008),但雌性动物并没有这样的变化(P=0.327).雄性动物在繁殖交配期中的取食时间显著减少.雌、雄两性动物在取食频次和取食时间方面的这些差异可能导致该山羊种群在食物摄入量上的性别差异:雌性山羊的食物摄入量相对比较稳定,而雄性山羊的摄入量则变动很大.估计的食物摄入量随月份而下降(尽管9月份以后有一微小幅度的上升),这意味着拉姆岛上的山羊种群在食物匮乏而天气寒冷潮湿的冬季可能面临着能量收支不平衡的威胁.  相似文献   

14.
In the United States, influenza season typically begins in October or November, peaks in February, and tapers off in April. During the winter holiday break, from the end of December to the beginning of January, changes in social mixing patterns, healthcare-seeking behaviors, and surveillance reporting could affect influenza-like illness (ILI) rates. We compared predicted with observed weekly ILI to examine trends around the winter break period. We examined weekly rates of ILI by region in the United States from influenza season 2003–2004 to 2012–2013. We compared observed and predicted ILI rates from week 44 to week 8 of each influenza season using the auto-regressive integrated moving average (ARIMA) method. Of 1,530 region, week, and year combinations, 64 observed ILI rates were significantly higher than predicted by the model. Of these, 21 occurred during the typical winter holiday break period (weeks 51–52); 12 occurred during influenza season 2012–2013. There were 46 observed ILI rates that were significantly lower than predicted. Of these, 16 occurred after the typical holiday break during week 1, eight of which occurred during season 2012–2013. Of 90 (10 HHS regions x 9 seasons) predictions during the peak week, 78 predicted ILI rates were lower than observed. Out of 73 predictions for the post-peak week, 62 ILI rates were higher than observed. There were 53 out of 73 models that had lower peak and higher post-peak predicted ILI rates than were actually observed. While most regions had ILI rates higher than predicted during winter holiday break and lower than predicted after the break during the 2012–2013 season, overall there was not a consistent relationship between observed and predicted ILI around the winter holiday break during the other influenza seasons.  相似文献   

15.
 Post-absorptive resting metabolic rates (RMRs), body mass and ad libitum food intake were recorded on an annual cycle in captive arctic foxes (Alopex lagopus) at Svalbard. During the light season in May and in the dark period in November, RMR during starvation and subsequent re-feeding were also measured. In contrast to earlier findings, the present study indicated a seasonal trend in post-absorptive RMR (in W · kg−1 and W · kg−0.75). The values in the light summer were 15% and 11% higher than the values in the dark winter, suggesting a physiological adaptation aiding energy conservation during winter in arctic foxes. Body mass and ad libitum food intake varied inversely through the year. A significant reduction in RMR (in W and W · kg−0.75) with starvation (metabolic depression) was recorded both in May and November, indicating an adaptation to starvation in arctic foxes. The lack of metabolic depression during a period of starvation that was concomitant with extremely cold ambient temperatures in November 1994 indicates that metabolic responses to starvation may be masked by thermoregulatory needs. At very low ambient temperatures, arctic foxes may require increased heat production which cannot be achieved via below-average rates of metabolism. Accepted: 7 June 1999  相似文献   

16.
Lord  Medway 《Ibis》1970,112(2):184-198
Wintering Brown Shrikes frequent open lowland country, a habitat that is largely man-made in Malaya. Individuals are sedentary during the winter season, each occupying a restricted area and exhibiting territorial behaviour. The earliest observations each year in different parts of Southeast Asia indicate that the southward migratory journey is relatively rapid. In Malaya, migrants arrive from the first week of September to the third week of October. At a lowland netting station during 1964–68 a major part of the total catch was taken in the months of September and October. Only a small proportion of these early shrikes wintered in the netting area. No distant recoveries were reported, and the subsequent movements of birds that were not retrapped are unknown. Shrikes netted in September—October comprised 29% adults, 54% full grown (i.e. immatures plus poorly—characterized adults), and 17% juveniles. The mean wing-length was significantly longer among adults than among both other classes, which did not differ significantly. During the winter, all ages showed a progressive decline in wing-length until the flight feathers were renewed in a premigratory moult falling in February—early April. Moult recorded in four Brown Shrikes taken in October-November is interpreted as the completion of a post-nuptial moult, commenced on the breeding grounds before autumn migration. In April, after the premigratory moult, confirmed adults constituted 70% of the total trapped and apparent immatures 30%. The mean weight of September birds was lower than any other month except November. The low weight in November is partly correlated with the shorter mean wing-length of the sample; it may also reflect the seasonally unfavourable weather of this month. The mean weight in February was high, although all birds were moulting; the weather in this month is typically hot and dry. Highest weights were recorded in April, indicating the premigratory deposition of fat. Weights of birds trapped more than once at different intervals showed a small initial weight loss (2 g), followed by a recovery within four days and no long-term adverse effects. A comparison of September weights in Taiwan and Malaya provides a tentative basis for the calculation of fat reserves utilized on the migratory flight. The proportion of returns after one year was 11%, and after two years 1 % only. Most returning birds were present in the netting area during the latter part of the winter of initial ringing; it is suggested tentatively that imprinting of the wintering grounds may occur during this period. Ecologically in Malaya the Brown Shrike occupies a new habitat only gradually being filled by the resident Rufous-backed Shrike. There is no evidence of interaction between the two species.  相似文献   

17.
We monitored the birth patterns of sympatric brown howler monkeys (Alouatta fusca clamitans) and northern muriquis (Brachyteles arachnoides hypoxanthus) during a 4‐yr period from October 1996 to August 2000 at the Estação Biológica de Caratinga, Minas Gerais, Brazil. Brown howler monkey births (n = 34) occurred throughout the year, and birth frequencies did not differ between rainy and dry season months. The aseasonal birth patterns of the howler monkeys differed significantly from the dry season concentration and dry month peak in muriqui births (n = 23). We found no effects of infant sex or the number of females on interbirth intervals (IBIs) in our 10 howler monkey study troops. IBIs of brown howler monkeys averaged 21.2 ± 2.5 mo (n = 8, median = 21.0 mo), and were significantly shorter following dry season births than rainy season births. Their IBIs and yearling survivorship (74%) were similar to those reported for other species of howler monkeys, but yearling survivorship was much lower than that of muriquis (94%), whose IBIs were more than 12 mo longer than those of the howler monkeys. Our study extends comparative knowledge of birth patterns in Alouatta to a poorly known species, and provides insights into the different ways in which diet and life history may affect the timing of births in large‐bodied platyrrhines under the same seasonal ecological conditions. Am. J. Primatol. 55:87–100, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
Reproductive seasonality was studied in 12 jennies in southern Wisconsin for 12 mo. The proportion of jennies ovulating differed (P < 0.05) among months due primarily to a lower proportion ovulating during December (64%) than during the other months (82 to 100%). Of 114 interovulatory intervals, eight were considered prolonged (>35 d) due to persistent corpus luteum (two intervals) and a follicular-related anovulatory period (six intervals). Four of the six follicular-related anovulatory periods were attributed to seasonal effects. The anovulatory season in these four jennies occurred in winter, was relatively short (39 to 72 d), and was terminated by a long period (17 to 41 d) of estrous behavior in the continued presence of large follicles (>20 mm). The prolonged estrus accounted for the lower incidence of ovulations during December and seemed similar to the transition between anovulatory and ovulatory seasons in mares. There was a significant effect of month on length of the interovulatory interval, even after removal of the eight prolonged intervals, due primarily to shorter intervals during May to September (means, 23.0 to 24.3 d) than during October to April (25.0 to 27.3 d). Length of estrus differed significantly among months due primarily to shorter periods during May to October (means, 5.7 to 6.9 d) than during November to April (7.4 to 15.2 d). These results indicated that this species is subjected to seasonal effects on reproductive function. However, contrary to the literature, the dramatic partitioning of the year into ovulatory and anovulatory seasons, as occurs in mares, was absent (eight jennies) or limited (four jennies).  相似文献   

19.
Many primates have to cope with a temporal scarcity in food availability that shapes their foraging strategies. Here we investigated the changes in diet, activity, and ranging behavior of a group of black-fronted titi monkeys (Callicebus nigrifrons) according to the availability of the main high-nutritional-density item in their diet and the foraging strategy adopted when this food is scarce. We monitored one habituated group using instantaneous scan sampling over 1 year (533 h of observation, 61 days) in a seasonal tropical forest fragment (245 ha). We simultaneously collected data on food availability with fruit traps. The titi monkeys consumed fleshy fruits, the main high-nutritional-density item of their diet, in accordance with its availability, and the availability of this item modulated the ingestion of vegetative plant parts, a relatively low-nutritional-density food. During high fleshy fruit availability, the titi monkeys consumed more fleshy fruits, flowers, and invertebrates. They also traveled more, but concentrated their activity in a central area of their home range. Conversely, during fleshy fruit scarcity, they increased the breadth of their diet, switching to one richer in seeds and vegetative plant parts, and with greater plant diversity. At the same time, they reduced most energy-demanding activities, traveling less and over shorter distances, but using their home range more broadly. Corroborating the optimal foraging theory, titi monkeys altered foraging strategies according to temporal food fluctuations and responded to low fleshy fruit availability by changing their diet, activity, and ranging behavior. The adoption of a low-cost/low-yield strategy allowed us to classify them as energy minimizers.  相似文献   

20.
A phenological-type synthesis was attempted for 10 years of limnological data of a brown-water stream of Alberta, Canada. The objectives were to predict the normal occurrence of seasonal events in the stream and to formulate indices upon which to base general stream management strategies. The stream supports a diverse chironomid fauna (109 species); and four taxa, chironomids, ostracods and the ephemeropteransLeptophlebia cupida andBaetis tricaudatus, account for 61% of the total yearly fauna by numbers. There are two obvious major seasons: a 7 month ice-free season (ca 15 April–15 November) and a 5 month winter season. Based on numerical classification of physical and chemical parameters, the ice-free season is separated into spring (April and May), summer (June, July and August) and autumn (September and October) seasons; and these four seasons can serve as the basis for describing biological seasonality. There are few detectable periodic events during the long, 5-month winter season: flow and water temperature are relatively constant and at minimum values. There are no reproductive periods for species studied; no new generations appear; drift densities are at minimum values; and for most taxa, little growth takes place in winter. Some of the important phenological events of the three ice-free seasons include: (1) a total emergence, hence reproductive, period of 6 months (April–September) for aquatic insects studied, with the largest number of taxa reproducing in late June and early July; (2) a 31/2 month period (late April–early August) when water temperatures are on the rise (log phase of total degree days curve), with maximum rate increase in May, maximum rate decrease in October, and maximum water temperature values in early August; (3) a completely green (trees and marsh grasses) watershed of less than 2 months (late June–early August); (4) a leaf-drop period of 11/2 months (September–mid October), with maximum litter-fall rate in early September; (5) maximum discharge in April; (6) minimum standing crop by numbers in April and maximum numbers in September; (7) maximum daily drift and drift densities (all taxa) in August; (8) maximum impounding effect of beaver dams in September; (9) maximum aquatic macrophyte standing crop in September; and (10) maximum ‘potential’ food resources (detritus of aquatic macrophyte and terrestrial leaf origin) in mid October.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号