共查询到20条相似文献,搜索用时 0 毫秒
1.
Taub DR 《American journal of botany》2000,87(8):1211-1215
I compared the C(4) grass flora and climatic records for 32 sites in the United States. Consistent with previous studies, I found that the proportion of the grass flora that uses the NADP malic enzyme (NADP-ME) variant of C(4) photosynthesis greatly increases with increasing annual precipitation, while the proportion using the NAD malic enzyme (NAD-ME) variant (and also the less common phosphoenolpyruvate carboxykinase [PCK] variant) decreases. However the association of grass subfamilies with annual precipitation was even stronger than for the C(4) decarboxylation variants. Analysis of the patterns of distribution by partial correlation analysis showed that the correlations between the frequency of various C(4) types and rainfall were solely due to the association of the C(4) types with particular grass subfamilies. In contrast, there was a strong correlation of the frequency of the different subfamilies with annual precipitation that was independent of the influence of the different C(4) variants. It therefore appears that other, as yet unidentified, characteristics that differ among grass subfamilies may be responsible for their differences in distribution across natural precipitation gradients. 相似文献
2.
Theoretical considerations have suggested that there may be differences in photosynthetic nitrogen use efficiency (PNUE) among plants that use different biochemical variants of C(4) photosynthesis. To test this hypothesis we examined the leaf nitrogen content and photosynthetic rates of six grass species (three of C(4) subtype NAD-ME and three of C(4) subtype NADP-ME) grown over a wide range of nitrogen supply. While there were significant differences among the species in various traits, there were no consistent differences between the C(4) subtypes in either leaf nitrogen content at a given level of nitrogen supply or in the leaf nitrogen-photosynthesis relationship. We suggest that species-level variation in photosynthetic nitrogen use efficiency among C(4) species is large enough to mask any differences that may be due to C(4) subtype. 相似文献
3.
Carmo-Silva AE Bernardes da Silva A Keys AJ Parry MA Arrabaça MC 《Photosynthesis research》2008,97(3):223-233
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways. 相似文献
4.
The photosynthetic linear electron transport rate in excess of that used for CO2 reduction was evaluated in Sorghum bicolor Moench. [NADP-malic enzyme (ME)-type C4 plant], Amaranthus cruentus L. (NAD-ME-type C4 plant) and Helianthus annuus L. (C3 plant) leaves at different CO2 and O2 concentrations. The electron transport rate (J
F) was calculated from fluorescence using the light partitioning factor (relative PSII cross-section) determined under conditions
where excess electron transport was assumed to be negligible: low light intensities, 500 μmol CO2 · mol−1 and 2% O2. Under high light intensities there was a large excess of J
F/4 at 10–100% O2 in the C3 plant due to photorespiration, but very little in sorghum and somewhat more in amaranth, showing that photorespiration is
suppressed, more in the NADP-ME- and less in the NAD-ME-type species. It is concluded that when C4 photosynthesis is limited by supply of atmospheric CO2 to the C4 cycle, the C3 cycle becomes limited by regeneration of ribulose 1,5-bisphosphate (RuBP) which in turn limits RuBP oxygenase activity and
photorespiration. The rate of excess electron transport over that consumed for CO2 fixation in C4 plants was very sensitive to the presence of O2 in the gas phase, rapidly increasing between 0.01 and 0.1% O2, and at 2% O2 it was about two-thirds of that at 21% O2. This shows the importance of the Mehler O2 reduction as an electron sink, compared with photorespiration in C4 plants. However, the rate of the Mehler reaction is still too low to fully account for the extra ATP which is needed in C4 photosynthesis.
Received: 8 November 1997 / Accepted: 26 December 1997 相似文献
5.
Bioenergy grass species are a renewable energy source, but their productivity has not been fully realized. Improving photosynthetic efficiency has been proposed as a mechanism to increase the productivity of bioenergy grass species. Fluctuating light, experienced by all field grown crops, is known to reduce photosynthetic efficiency. This experiment aimed to evaluate the photosynthetic performance of both C3 and C4 bioenergy grass species under steady state and fluctuating light conditions by examining leaf gas exchange. The fluctuating light regime used here decreased carbon assimilation across all species when compared to expected steady state values. Overall, C4 species assimilated more carbon than C3 species during the fluctuating light regime, with both photosynthetic types assimilating about 16% less carbon than expected based on steady state measurements. Little diversity was observed in response to fluctuating light among C3 species, and photorespiration partially contributed to the rapid decreases in net photosynthetic rates during high to low light transitions. In C4 species, differences among the four NADP-ME species were apparent. Diversity observed among C4 species in this experiment provides evidence that photosynthetic efficiency in response to fluctuating light may be targeted to increase C4 bioenergy grass productivity. 相似文献
6.
Z. Zhu J. Gerendás R. Bendixen K. Schinner H. Tabrizi B. Sattelmacher U-P. Hansen 《Plant biology (Stuttgart, Germany)》2000,2(5):558-570
Abstract: NH4+‐grown plants are more sensitive to light stress than NO3?‐grown plants, as indicated by reduced growth and intervenal chlorosis of French bean (Phaseolus vulgaris L.). Measuring the time course of Fv/Fm ratios under photoinhibitory light regimes did not reveal any difference in PS II damage between NO3?‐ and NH4+‐grown plants, in spite of some indications of higher energy quenching in NO3?‐grown plants. Also, a direct action of NH4+ as an uncoupler at the thylakoid membrane could be excluded. Instead, biochemical analysis revealed enhanced lipid peroxidation and higher activity of scavenging enzymes in NH4+‐grown plants indicating that these plants make use of metabolic pathways with stronger radical formation. Evidence for higher rates of photorespiration in NH4+‐grown plants came from experiments showing that electron flux and O2 evolution were decreased by SHAM in NH4+‐grown plants, and by antimycin A in NO3?‐grown plants. Further, the comparison of electron flux and of photoacoustic measurements of O2 evolution suggested that in NH4+‐grown plants the Mehler reaction was also increased, at least in the induction phase. However, the major cause of N form‐dependent stress sensitivity is assumed to be in the coupling between photosynthesis and respiration, i.e., NO3?‐grown plants can utilize the TCA cycle for the generation of C skeletons for amino acid synthesis, thus improving the ATP: reductant balance, whereas NH4+‐grown plants have enhanced rates of photorespiration. 相似文献
7.
Simultaneous measurements of 9-aminoacridine (9-AA) fluorescence quenching, O2-uptake and chlorophyll fluorescence of intact spinach chloroplasts were carried out to assess the relationship between the transthylakoidal pH and linear electron flux passing through Photosystem II. Three different types of O2-dependent electron flow were investigated: (1) Catalysed by methyl viologen; (2) in the absence of a catalyst and presence of an active ascorbate peroxidase (Mehler-peroxidase reaction); (3) in the absence of a catalyst and with the ascorbate peroxidase being inhibited by KCN (Mehler reaction). The aim of this study was to assess the relative contribution of pH-formation which is not associated with electron flow through Photosystem II and, which should reflect Photosystem I cyclic flow under the different conditions. The relationship between the extent of 9-AA fluorescence quenching and O2-uptake rate was found to be almost linear when methyl viologen was present. In the absence of methyl viologen (Mehler reaction) an increase of 9-AA fluorescence quenching to a value of 20% at low light intensities was associated with considerably less O2-uptake than in the presence of methyl viologen, indicating the involvement of cyclic flow. These findings are in agreement with a preceding study of Kobayashi and Heber (1994). However, when no KCN was added, such that the complete Mehler-peroxidase reaction sequence was operative, the relationship between 9-AA fluorescence quenching and the flux through PS II, as measured via the chlorophyll fluorescence parameter F/Fm × PAR, was identical to that observed in the presence of methyl viologen. Under the assumption that methyl viologen prevents cyclic flow, it is concluded that there is no significant contribution of cyclic electron flow to pH-generation in intact spinach chloroplasts. 相似文献
8.
Factors Limiting Photosynthetic Recovery in Sweet Pepper Leaves After Short-Term Chilling Stress Under Low Irradiance 总被引:2,自引:0,他引:2
The effects of chilling treatment (4 °C) under low irradiance, LI (100 mol m–2 s–1) and in the dark on subsequent recovery of photosynthesis in chilling-sensitive sweet pepper leaves were investigated by comparing the ratio of quantum yields of photosystem (PS) 2 and CO2 assimilation, PS2/CO2, measured in normal air (21 % O2, NA) and low O2-air (2% O2, LOA), and by analyzing chlorophyll (Chl) a fluorescence parameters. Chilling treatment in the dark had little effect on Fv/Fm and PS2/CO2, but it caused the decrease of net photosynthetic rate (P
N) under saturating irradiance after 6-h chilling treatment, indicating that short-term chilling alone did not induce PS2 photoinhibition. Furthermore, photorespiration and Mehler reaction also did not obviously change during subsequent recovery after chilling stress in the dark. During chilling treatment under LI, there were obvious changes in Fv/Fm and PS2/CO2, determined in NA or LOA. Fv/Fm could recover fully in 4 h at 25 °C, and PS2/CO2 increased at the end of the treatment, as determined in both NA and LOA. During subsequent recovery, PS2/CO2 in LOA decreased faster than in NA. Thus the Mehler reaction might play an important role during chilling treatment under LI, and photorespiration was an important process during the subsequent recovery. The recovery of PN under saturating irradiance determined in NA and LOA took about 50 h, implying that there were some factors besides CO2 assimilation limiting the recovery of photosynthesis. From the progress of reduced P700 and the increase of the Mehler reaction during chilling under LI we propose that active oxygen species were the factors inducing PS1 photoinhibition, which prevented the recovery of photosynthesis in optimal conditions because of the slow recovery of the oxidizable P700. 相似文献
9.
轻度水分胁迫下苹果叶片Pr迅速升高 ,CAT活性变化不大 ,NaHSO3 处理能显著降低叶内H2 O2 含量 ,表明光呼吸的加强促进了H2 O2 产生可能是叶内H2 O2大量积累的主要原因 ;中度水分胁迫下叶片AsA含量的下降和Mehler反应的增强都非常明显 ,DDTC和AsA处理都能有效降低叶内H2 O2 积累 ,但MV处理的作用不大 ,说明叶片H2 O2 主要来源于Mehler反应 ,AsA降解造成叶片对H2 O2 清除能力的下降是其积累的根本原因 ;严重水分胁迫时 ,NaHSO3 和DDTC都不能有效地减轻叶内H2 O2 积累 ,光呼吸和Mehler反应都可能不是H2 O2 的主要来源 相似文献
10.
Stephanie J. E. Wand GuY. F. Midgley Michael H. Jones† Peter S. Curtis† 《Global Change Biology》1999,5(6):723-741
C4 plants contribute ≈ 20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We carried out a literature review (1980–97) and meta-analysis in order to identify emerging patterns of C4 grass responses to elevated CO2, as compared with those of C3 grasses. The focus was on nondomesticated Poaceae alone, to the exclusion of C4 dicotyledonous and C4 crop species. This provides a clear test, controlled for genotypic variability at family level, of differences between the CO2-responsiveness of these functional types. Eleven responses were considered, ranging from physiological behaviour at the leaf level to carbon allocation patterns at the whole plant level. Results were also assessed in the context of environmental stress conditions (light, temperature, water and nutrient stress), and experimental growing conditions (pot size, experimental duration and fumigation method). Both C4 and C3 species increased total biomass significantly in elevated CO2, by 33% and 44%, respectively. Differing tendencies between types in shoot structural response were revealed: C3 species showed a greater increase in tillering, whereas C4 species showed a greater increase in leaf area in elevated CO2. At the leaf level, significant stomatal closure and increased leaf water use efficiency were confirmed in both types, and higher carbon assimilation rates were found in both C3 and C4 species (33% and 25%, respectively). Environmental stress did not alter the C4 CO2-response, except for the loss of a significant positive CO2-response for above-ground biomass and leaf area under water stress. In C3 species, stimulation of carbon assimilation rate was reduced by stress (overall), and nutrient stress tended to reduce the mean biomass response to elevated CO2. Leaf carbohydrate status increased and leaf nitrogen concentration decreased significantly in elevated CO2 only in C3 species. We conclude that the relative responses of the C4 and C3 photosynthetic types to elevated CO2 concur only to some extent with expectations based on photosynthetic theory. The significant positive responses of C4 grass species at both the leaf and the whole plant level demand a re-evaluation of the assumption of low responsiveness in C4 plants at both levels, and not only with regard to water relations. The combined shoot structural and water use efficiency responses of these functional types will have consequential implications for the water balance of important catchments and range-lands throughout the world, especially in semiarid subtropical and temperate regions. It may be premature to predict that C4 grass species will lose their competitive advantage over C3 grass species in elevated CO2. 相似文献
11.
Photoinhibition and Active Oxygen Species Production in Detached Apple Leaves During Dehydration 总被引:1,自引:0,他引:1
In the course of dehydration, the gas exchange and chlorophyll (Chl) fluorescence were measured under irradiance of 800 mol m–2 s–1 in detached apple leaves, and the production of active oxygen species (AOS), hydrogen peroxide (H2O2), superoxide (O2
–), hydroxyl radical (–OH), and singlet oxygen (1O2), were determined. Leaf net photosynthetic rate (P
N) was limited by stomatal and non-stomatal factors at slight (2–3 h dehydration) and moderate (4–5 h dehydration) water deficiency, respectively. Photoinhibition occurred after 3-h dehydration, which was defined by the decrease of photosystem 2 (PS2) non-cyclic electron transport (P-rate). After 2-h dehydration, an obvious rise in H2O2 production was found as a result of photorespiration rise. If photorespiration was inhibited by sodium bisulfite (NaHSO3), the rate of post-irradiation transient increase in Chl fluorescence (Rfp) was enhanced in parallel with a slight decline in P-rate and with an increase in Mehler reaction. At 3-h dehydration, leaf P-rate decrease could be blocked by glycine (Gly) or methyl viologen (MV) pre-treatment, and MV was more effective than Gly at moderate drought time. AOS (H2O2 and O2
–), prior to photoinhibition produced from photorespiration and Mehler reaction in detached apple leaves at slight water deficiency, were important in dissipating photon energy which was excess to the demand of CO2 assimilation. So photoinhibition could be effectively prevented by the way of AOS production. 相似文献
12.
Mutation of the sid gene in Festuca pratensis prevents chlorophyll degradation. The senescing leaves retain their chlorophyll complement and stay green. Nevertheless, CO2 assimilation and ribulose-bisphosphate carboxylase/oxygenase content decline in both mutant and wild-type plants. Photosynthesis and chlorophyll a fluorescence measurements were performed in air and at low oxygen to prevent photorespiration. The maximum extractable activity of ribulose 1,5 bisphosphate carboxylase was higher in the senescent mutant leaves than in those of the wild-type control hut Mas much lower than that observed in the mature leaves of either genotype. The activation state of this enzyme was similar in mutant and wild-type lines at equivalent stages of development. Analysis of chlorophyll a fluorescence quenching with varying irradianco showed similar characteristics for mature leaves of the two genotypes. Genotypic variations in photosystem II (I'SII) efficiency were observed only in the senescent leaves. Photochemical quenching and the quantum efficiency of PSII were greater in the senescent mutant leaves than in (he wild type at a given irradiance. The calculated electron flux through PSII was substantially higher in the mutant with a greater proportion of electrons directed to photorespiration. Maximum catalytic activities of ascorbate peroxidase decreased in senescent compared to mature leaves of both genotypes, while glutathione reductase and monodehydroascorbate reductase were unchanged in both cases. Superoxide dismutase activity was approximately doubled and dehydroascorbate reductase activity was three times higher in senescent leaves compared with the mature leaves of both genotypes. In no case was there a difference in enzyme activities between mutant and wild type at equivalent growth stages. The pool of reduced ascorbate was similar in the mature leaves of the two genotypes, whereas it was significantly higher in the senescent leaves of the mutant compared with the wild type. Conversely, the hydrogen peroxide content was significantly higher in the mature leaves of the wild type than in those of the mutant, but in senescent leaves similar values were obtained. In leaves subjected to chilling stress the reduced ascorbate pool was higher in both mature and senescent leaves of the mutant than in their wild-type counterparts. Similarly, the hydrogen peroxide pool was significantly lower in both mature and senescent leaves of the mutant than in the wild type. We conclude that, in spite of deceased CO2 assimilation, the mutant is capable of high rates of electron Slow. The high ascorbate/hydrogen peroxide ratio observed in the mutant, particularly at low temperatures, suggests that the senescent leaves are not subject to enhanced oxidative stress. 相似文献
13.
Henning Hormann Christian Neubauer Kozi Asada Ulrich Schreiber 《Photosynthesis research》1993,37(1):69-80
The pH-dependence of light-driven O2-reduction in intact spinach chloroplasts is studied by means of chlorophyll fluorescence quenching analysis and polarographic O2-uptake measurements. Most experiments are carried out in presence of KCN, which blocks activities of Calvin cycle, ascorbate peroxidase and superoxide dismutase. pH is varied by equilibration with external buffers in presence of nigericin. Vastly different pH-optima for O2-dependent electron flow are observed in the presence and absence of the redox catalyst methyl viologen. Both fluorescence quenching analysis and O2-uptake reveal a distinct pH 5 optimum of O2-reduction in the absence of methyl viologen. In the presence of this catalyst, O2-reduction is favoured in the alkaline region, with an optimum around pH 8, similar to other types of Hill reaction. It is suggested that in the absence of methyl viologen the extent of irreversibility of O2-reduction is determined by the rate of superoxide protonation. This implies that O2-reduction takes place within the aprotic phase of the thylakoid membrane and that superoxide-reoxidation via oxidized PS I donors competes with protonation. Superoxide protonation is proposed to occur at the internal surface of the thylakoid membrane. There is no competition between superoxide reoxidation and protonation when in the presence of methyl viologen the site of O2-reduction is shifted into the protic stroma phase. In confirmation of this interpretation, fluorescence measurements in the absence of KCN reveal, that non-catalysed O2-dependent electron flow is unique in beingstimulated by the transthylakoidal pH-gradient. On the basis of these findings a major regulatory role of O2-dependent electron flow under excess light conditions is postulated. 相似文献
14.
A. B. Cousins N. R. Adam G. W. Wall B. A. Kimball P. J. Pinter Jr M. J. Ottman S. W. Leavitt & A. N. Webber 《Plant, cell & environment》2002,25(11):1551-1559
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm′. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress. 相似文献
15.
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700+ show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.Abbreviations BTP
1,3-bis[tris(hydroxymethyl)-methylaminopropane]
- CA
carbonic anhydrase'
- Ci
inorganic carbon (CO2+HCO3
–+CO3
2–)
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- DMQ
2,6-dimethylbenzoquinone
- EZ
ethoxyzolamide or 6-ethoxy-2-benzothiazole-sulfonamide
- FCCP
carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone
- F
steady-state chlorophyll fluorescence
- Fm
chlorophyll fluorescence during a saturating light pulse
- Fo
chlorophyll fluorescence in the dark, prior to illumination by actinic light
- MV
methyl viologen or 1,1-dimethyl-4,4-bipyridinium dichloride
- PCR cycle
photosynthetic carbon reduction cycle
- PNDA
N,N-dimethyl-p-nitrosoaniline
- PS 1
the quantum yield of Photosystem 1
- PS 2
the quantum yield of Photosystem 2 相似文献
16.
Raymond V. Barbehenn Zhong Chen† David N. Karowe‡ Angela Spickard§ 《Global Change Biology》2004,10(9):1565-1575
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses. 相似文献
17.
18.
Mechanisms of energy dissipation in peanut under water stress 总被引:1,自引:0,他引:1
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57–422, 73–30, and GC 8–35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57–422 and GC 8–35, while in the cv. 73–30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57–422 and 73–30. 相似文献
19.
Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling‐sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co‐limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP‐ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦP:ΦCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling. 相似文献
20.
Activities of photosystems I and II were compared at a saturating irradiance in air- and 5% CO2-adapted and adapting Chlamydomonas segnis at the active phase of photosynthesis during the cell cycle. PSII activity was 200% greater in air- than in 5% CO2-adapted cells, while PSI activity was similar in both types of cells and matched the level of PSII activity in air-adapted cells. As a result, air- and 5% CO2-adapted cells were characterized by low and high PSI/PSII ratios, respectively. In air-adapted cells, the greater PSII activity (rate of O2 evolved) exceeded that of photosynthetic (Ps) O2 evolution, resulting in a Ps/PSII ratio below unity. This was associated with higher levels of catalase activity, lower l -ascorbate content, and higher dehydro-l -ascorbate content than in 5% CO2-adapted cells. During adaptation to air or 5% CO2 for 6 h in light, PSI rather than PSII was sensitive to changes in the concentration of CO2, and the adapting cells acquired the characteristics of air- and 5% CO2-adapted cells as indicated by PSI/PSII, Ps/PSII, catalase activity, l -ascorbate and dehydro-l -ascorbate contents. The results are discussed in the light of changes in the molecular organization of the thylakoid membranes and enhanced non-cyclic electron transport coupled with O2-uptake (Mehler reaction) for the generation of the ATP required for CO2/HCO?3-transport in air-adapted and adapting cells. 相似文献