首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

2.
We have used human mammary cells of the MCF-7 strain, which constitutively express high levels of the small heat shock protein HSP27 and we have compared the changes in the phosphorylation status of this protein together with changes in cell growth and/or morphology induced by the action of one of the following agents: (1) TPA (12-O-tetradecanoylphorbol-13-acetate), known as a differentiation inducer in MCF-7 cells; (2) OH-TAM (hydroxytamoxifen), which exerts a cytostatic and cytotoxic action; or (3) TNFα (tumour necrosis factor), which induces apoptotic cell death in this cell line. Our data show that TPA and TNF stimulate an immediate and massive phosphorylation of HSP27, whereas OH-TAM affect the phosphorylation status of the protein only after a 3 day delay. In the case of TPA, high levels of HSP27 phosphorylation were maintained for at least 4 days, along with growth inhibition and acquisition by the cells of a secretory phenotype. TPA and OH-TAM exerted similar immediated effects on cell growth, despite the different time course of their action on HSP27 phosphorylation. This excludes the possibility that the latter is a necessary consequence of, or an absolute requisite to, growth inhibition. With OH-TAM and TNF the increase in HSP27 phosphorylation was concomitant with the appearance of apoptosis, not observed with TPA. This indicates that increased phosphorylation of HSP27 is not specifically associated with the triggering or the execution of apoptosis in these cells. Altogether, our data support the concept that phosphorylated HSP27 is involved (and might then be rate limiting in some instances) in the execution of vital cell programmes (including resistance to stress, proliferation and differentiation), as well as in that of cell death. This is consistent with its role in actin polymerization and its position downstream of the p38/RK-type MAPkinase, itself a point of convergence for diverse signal transduction pathways.  相似文献   

3.
Summary Previously, we have shown that IGF-1, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and aurintricarboxylic acid (ATA) protected MCF-7 cells against death induced by the protein synthesis inhibitor cycloheximide (CHX). We proposed that phosphorylation of a putative cellular protein(s) may be involved in this survival mechanism. In the present study we investigated the ability of several agents to induce phosphorylation of cellular proteins and correlated this ability to their survival effect. We found that TPA, ATA, and IGF-1 increased the degree of phosphorylation of a 27-kDa protein in a dose- and time-dependent manner in CHX-treated MCF-7 cells. The ED50 values observed were 25 ng/ml, 40 μg/ml and 15 ng/ml for TPA, ATA, and IGF-1, respectively. The effect was measured upon 10 min of cell treatment with each agent; it reached maximum at 60 min and thereafter decreased continuously to control levels. The 27-kDa protein was found in the cytosolic fraction as a phosphorylated serine residue. Further characterization with two-dimensional electrophoresis indicated that the 27-kDa phosphoprotein was resolved into two isoforms with pI 5.7 and 5.9. Such characteristics were observed for the small molecular weight heat shock protein HSP27. Indeed, a single band of 27 kDa was detected immunologically with rabbit polyclonal anti-human HSP27. The inactive phorbol ester αTPA, epidermal growth factor (EGF), and 8-bromoadenosine 3′5′-cyclic monophosphate (Br-cAMP) did not increase phosphorylation of the 27-kDa protein. Cell survival was measured by exposure of the CHX-pretreated cells to increasing concentrations of the various agents for 60 min, followed by a further incubation for 48 h in the presence of CHX only. TPA, ATA, and IGF-1 were found to enhance cell survival, whereas αTPA, EGF, and Br-cAMP did not. Our results indicate a correlation between phosphorylation of a 27-kDa protein, probably HSP27, and enhanced cell survival, suggesting a role for this phosphoprotein in the survival mechanism.  相似文献   

4.
A detergent extract isolated from the enriched fraction of integral membrane proteins of Jurkat cells showed an enhanced tyrosine phosphate level when phosphorylated in the presence of phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDBu). The enhanced tyrosine phosphorylation was observed when the reaction time exceeded 6 min; at shorter incubation times, however, TPA inhibited tyrosine phosphorylation. When the reaction proceeded for a constant time period longer than 6 min and phorbol esters were added at different times after the start of the reaction, two phases of an enhanced tyrosine phosphorylation of a 50 kDa protein were observed. An increased phosphorylation of the 50 kDa protein was correlated with an enhanced phosphorylation of poly(Glu4,Tyr1). The two phases of enhanced phosphorylation differed in their TPA and PDBu requirement and in the proteins that were tyrosine phosphorylated. Studies with protein kinase C (PKC) inhibitors showed a negatively correlated effect on the enhanced tyrosine phosphorylation in phase I; tyrosine phosphorylation was further augmented. In phase II the regulation of tyrosine phosphorylation correlated with the efficiency of the PKC inhibitors on the alpha-isoform of PKC which was found in the cell extract. Separation of the proteins present in the investigated cell extract by gel filtration revealed a co-migration of the alpha-PKC and the 50 kDa protein. The metabolic labeling of intact Jurkat cells with 32Pi indicated that phorbol esters are also able to induce tyrosine phosphorylation of the 50 kDa protein underin vivo conditions. These data suggest an activation of two different tyrosine phosphorylation pathways by phorbol esters involving tyrosine phosphorylation/autophosphorylation of a 50 kDa kinase, as confirmed by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) labeling, that are accurately regulated by alpha-PKC.  相似文献   

5.
M Hartmann  M Kelm  J Schrader 《Life sciences》1991,48(17):1619-1626
In cultured coronary endothelial cells obtained from guinea pig hearts, bradykinin (10(-6) M) stimulated the 32Pi-incorporation into 5 substrate proteins with molecular weights corresponding to 27, 32, 60, 86 and 100 kDa. The time course of phosphorylation of the 60, 86 and 100 kDa proteins was rapid (within 30 s), but transient (max. within 1-2 min.), while the 32Pi incorporation into the 27 and 32 kDa protein was delayed but increased within 10 minutes. Ca+(+)-ionophore A 23187 (10(-5) M) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-5) M) both mimicked the effects of the bradykinin induced phosphorylation pattern. While A 23187 enhanced the phosphorylation of the 27, 60 and 100 kDa substrates, TPA increased the 32Pi-incorporation into the 32 and 86 kDa proteins. Furthermore the time course of protein phosphorylation elicited by A 23187 and TPA showed marked similarities to those obtained with bradykinin. Our findings are consistent with the view, that stimulation of coronary endothelial bradykinin-receptors activates both Ca+(+)-dependent protein kinases and protein kinase C.  相似文献   

6.
Basic fibroblast growth factor (FGF2) is synthesized as four isoforms with molecular weights of 24, 22.5, 22, and 18 kDa, with each of the three higher molecular weight forms (hmwFGF2) produced by the initiation of translation at one of three upstream CUG codons. We have shown that bovine arterial endothelial cells export the high molecular weight forms of FGF2 (hmwFGF2) in a 17beta-estradiol-dependent manner (Piotrowicz et al., 1997, J Biol Chem 272:7042-7047). To determine whether the hmwFGF2 forms affected cell behavior after release, we evaluated the effect of recombinant hmwFGF2 on the growth and migration of endothelial cells and mammary carcinoma cells (MCF-7). Treatment with the recombinant protein resulted in the inhibition of endothelial cell migration by 45% and MCF-7 cell migration by 70%. HmwFGF2-dependent inhibition was observed when endothelial cell migration was stimulated by 18 kDa FGF2 or vascular endothelial growth, and MCF cell migration was stimulated with insulin-like growth factor. In each case, inclusion of an antibody against the 55 amino acid amino terminal end of 24 kDa FGF2 abrogated the inhibition of migration, while antibodies to the 18 kDa FGF2 domain had no effect. When endothelial cells were cultured under conditions which promoted export of hmwFGF2, a 40% decrease in motility was observed which was reversed by the antibodies to the 24 kDa FGF2. Thus, both recombinant and endogenously produced hmw-FGF2 are capable of inhibiting migration. In contrast to the ubiquitous effect on migration, hmwFGF2 had no effect on endothelial cell growth but stimulated MCF-7 growth equally as well as the 18 kDa FGF2 (threefold). Antibodies to the 18 kDa domain of 24 kDa FGF2 blocked the growth-promoting activity of hmwFGF2, but those to the amino terminal end were ineffective. These data suggest that hmwFGF2 has dual activities, an inhibitory effect on cell migration and a growth-stimulating effect. The two activities can be localized to different parts of hmwFGF2: inhibitory activity to the amino terminal 55 amino acids (which are absent from the 18 kDa FGF2) and growth-promoting activity to the 18 kDa domain. Therefore, the ratio of hmwFGF2 and 18 kDa FGF2 in the extracellular space may provide a mechanism of control for angiogenesis and mammary tumor development.  相似文献   

7.
Treatment of cultured rat Sertoli cells with FSH or dibutyryl cAMP for 30 min resulted in phosphorylation of the same Sertoli cell proteins. Different Sertoli cell proteins were phosphorylated after calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. A23187 stimulated the phosphorylation of hsp27, while TPA alone had no effect. TPA plus A23187 resulted in phosphorylation of a 14 kDa protein, in addition to hsp27. The effect of TPA plus A23187 was identical to that of germ cells on Sertoli cell protein phosphorylation. FSH-stimulated cAMP production by Sertoli cells was reduced by prior exposure of Sertoli cells to germ cells. The results indicate that germ cells stimulate Sertoli cells by the inositol trisphosphate/diacylglycerol mediated second messenger pathway. The results also suggest that the germ cell-activated pathway interacts within Sertoli cells to modulate Sertoli cell response to FSH.  相似文献   

8.
The synthesis of a 66 kDa protein immunoreactive with antibodies to human alpha 1-antichymotrypsin (alpha 1-ACT) is induced by estradiol (E2) in the human breast cancer cell line MCF-7. We have purified this alpha 1-ACT-like 66 kDa protein from medium conditioned by MCF-7 cells, performed a comparative physico-chemical characterization with serum alpha 1-ACT, and analysed its presumed positive regulatory effect on growth of MCF-7 cells. The 66 kDa protein is a functional antiproteinase which is antigenically identical to serum alpha 1-ACT. The 66 kDa protein does however deviate from serum alpha 1-ACT with respect to mol. wt. and pattern of microheterogeneity, the molecular mechanism for this is probably an incomplete glycoprotein processing in the MCF-7 cells. The results of our growth experiments suggest that the 66 kDa protein is a minor positive growth regulatory factor, which may contribute to breast carcinoma cell proliferation in a cooperative manner.  相似文献   

9.
Abstract. As demonstrated previously, the transition of starving Dictyostelium cells from growth to differentiation phase occurs at a particular position (putative shift point; PS-point) in G2-phase of the cell cycle of Dictyostelium discoideum Ax-2. In this study we examined what proteins are phosphorylated or dephosphorylated at the onset of starvation, with special emphasis on changes of phosphoproteins near the PS-point. When AX-2 cells at any particular phase of the cell cycle were pulse-labeled with inorganic 32P (32Pi) in the presence or absence of nutrients, it was found that 101 kDa and 90 kDa phosphoproteins exhibit specific changes around the PS-point. From the chase-experiments of 32P-labeled cells, the 101 kDa and 90 kDa proteins were found to fail to be phosphorylated at the PS-point under starvation conditions. The protein phosphatase inhibitors such as okadaic acid and calyculin A inhibited completely entry of starving Ax-2 cells to differentiation, and also blocked perfectly dephosphorylation of 32 kDa protein. Taken together it is likely that dephosphorylation of 32 kDa protein as well as low phosphorylation levels of 101 kDa and 90 kDa proteins may be required for the phase-shift of Ax-2 cells from growth to differentiation. Subcellular fractionation showed the 101 kDa phosphoprotein to be located in cytoplasm, while parts, at least, of the 90 kDa and 32 kDa phosproproteins were in the nucleus. In addition, the results of cellulose thin-layer electrophoresis of digested 101 kDa and 90 kDa phosphoproteins show that in both proteins only serine residues are phosphorylated. The significance of phosphorylation states of 101 kDa, 90 kDa, and 32 kDa proteins is discussed in relation to a breakaway of cells from proliferation to differentiation.  相似文献   

10.
In order for T cells to exit the circulatory system, traverse the endothelial basement membrane, and arrive in target tissues, these cells must attach to and degrade basement membrane proteins. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to stimulate lymphoid cell adhesion to basement membrane components. We have used TPA to study the ability of human lymphoid cells to secrete type IV collagenases, enzymes capable of degrading basement membrane proteins. Here, we found that human primary T cells and H-9 lymphoid cells synthesize the 92 kDa type IV collagenase (gelatinase B) and TPA stimulates the synthesis and secretion of this protease. Peak TPA-stimulated gelatinase B secretion and mRNA accumulation were observed 9 hours after TPA treatment, while the peak adhesion to type IV collagen was observed only 3 hours after TPA treatment. The protein kinase C inhibitor, H-7, inhibited TPA-stimulated gelatinase B secretion. Both the primary T cells and H-9 lymphoid cells also expressed the mRNA for the tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that TPA - stimulated lymphoid cells adhere to type IV collagen and subsequently synthesize and secrete gelatinase B and TIMP-1. We conclude that lymphoid cell extravasation may involve cellular employment of adhesion mechanisms prior to degradation of the matrix, which is similar to the process of extravasation used by metastatic cells. © 1993 Wiley-Liss, Inc.  相似文献   

11.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

12.
It is well established that thrombin induces various biological responses in endothelial cells derived from large vessels. However, little is known about the effects of thrombin on the microvasculature. Protein phosphorylation may be one of the mechanisms by which an extracellular stimulus initiates cellular events like proliferation. Therefore, we have compared the effects of either human alpha-thrombin or phorbol esters (TPA) on the proliferation or protein phosphorylation in endothelial cells derived from large vessels (umbilical vein, HUVEC) or microvessels (omental tissue, HOMEC). In HOMEC, thrombin did not stimulate cell proliferation and protein phosphorylation while TPA slightly reduced the cell proliferation and induced the phosphorylation of a 27-kDa protein. In contrast, in HUVEC, thrombin or TPA markedly enhanced the cell proliferation and stimulated the phosphorylation of a 59-kDa protein. These data indicate that (i) endothelial cells from large and small vessels respond differently to thrombin and (ii) there is a complex and as yet unclear relationship between the proliferation and the protein phosphorylation induced by thrombin.  相似文献   

13.
The tumor-promoting 12-0-tetradecanoylphorbol-13-acetate (TPA) stimulated phosphorylation of several proteins in block I (including protein Ia) and protein 3 in HL60 cells. The antileukemic agent alkyllysophospholipid (ALP) inhibited the TPA-stimulated phosphorylation of these proteins and the TPA-induced differentiation of the cells. In comparison, TPA only stimulated phosphorylation of protein 3 in K562 cells which, in contrast, were not induced to differentiate by TPA and lacked protein Ia and had a very high basal phosphorylation of protein B. ALP inhibited phosphorylation of protein 3 as well as protein B in K562 cells. The data suggest that the presence of distinct phosphoproteins and regulation of their phosphorylation may be related to the selective susceptibility of the two leukemia cell lines to the maturating effect of TPA and cytotoxicity of ALP.  相似文献   

14.
Amphiregulin (AR) can be induced at the mRNA level by 17-β-estradiol (E2) or the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). This study compares the effects of TPA and E2 on the regulation of processing of AR isoforms and on subcellular localization in human MCF-7 breast cancer cells. AR was localized in the nucleus of MCF-7 cells after E2 treatment, whereas it was predominantly secreted after TPA treatment. AR isoforms of 28, 18, and 10 kDa and an additional species of approximately 55–60 kDa were detected in the cellular conditioned media after TPA stimulation. Expression of this unusual AR isoform was inhibited by protein kinase C (PKC) inhibitors such as bryostatin or H-7. The biochemical properties of this isoform are consistent with it being an N-linked glycosylated form of the AR precursor that contains unprocessed mannose residues. The size of this large isoform is reduced to approximately 40 kDa after treating the TPA-induced MCF-7 cells with tunicamycin or treating the conditioned media of such cells with N-glycosidase F or with endoglycosidase H. Moreover, this isoform is able to bind several lectins with specificity for mannose residues. The 55–60 kDa glycosylated AR isoform, like lower Mr AR isoforms, is able to bind to heparin and to stimulate the growth of MCF-10A cells by interacting with the EGF receptor. These data suggest that TPA activation of PKC may be involved in post-translational modifications of AR, such as glycosylation, and in alteration of its subcellular routing to predominantly a secretory pathway. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Nerve growth factor (NGF) rapidly stimulates the phosphorylation of a 250 kDa cytoskeletally-associated protein (pp250) by a protein kinase which is also associated with structural elements of the cell. We have solubilized these proteins and demonstrated that NGF-stimulated phosphorylation can be observed in cell free extracts of cytoskeletons from NGF-treated PC12 cells. The pp250 substrate and the 250-kinase were solubilized from PC12 cytoskeletons by treatment with 2 M urea. Phosphorylation of pp250 was maximally stimulated following treatment of the cells for 5 min with NGF. This effect was transient, diminishing with longer exposure of the cells to hormone. The 250-kinase preferred Mn2+ over Mg2+ and was inhibited by both Na+ and K+. The phosphorylation of pp250 was not affected by Ca2+. Upon fractionation of the urea-soluble cytoskeletal proteins by gel filtration, the 250-kinase eluted in two peaks; one peak of enzyme activity coeluting with the pp250 substrate, and a second peak of enzyme activity eluting with an apparent Mr of approximately 60 kDa. Treatment of the PC12 cells with the phorbol ester TPA also stimulated the phosphorylation of pp250, although this effect was not as great as that produced by NGF. This cell free system should be a valuable tool in the investigation of the mechanisms of NGF action.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

16.
17.
Neutrophils stimulated with 4 beta-phorbol 12-myristate 13-acetate release large quantities of superoxide (O2-) and exhibit an intense phosphorylation of two proteins with molecular masses of approx. 47 and 49 kDa. Treatment of unstimulated cells with antagonists of protein kinase C (e.g., staurosporine; 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7)) is known to inhibit both of these phenomena upon stimulation. These antagonists of PKC also cause a rapid cessation of O2- release when added to cells that are already stimulated. In this paper, we report that the addition of staurosporine or H-7 to stimulated neutrophils resulted in a rapid loss of 32P from both the 47 and the 49 kDa phosphoprotein bands, as detected by autoradiography. This suggests that these two proteins may be regulated by a continual cycle of phosphorylation and dephosphorylation in the stimulated cell, with the phosphorylation reactions predominating, or undergo a rapid degradation subsequent to phosphorylation. Either explanation is consistent with the view that protein kinase C activity is necessary to both initiate and maintain O2- production in neutrophils stimulated with tumor promoters.  相似文献   

18.
Uterine leiomyoma occurs in one of every four or five women during their reproductive life. Its origin is unknown but it is accepted that estrogens play a significant role in its development. In order to learn more about the estrogen dependency of leiomyoma, the biochemical and immunological properties of two markers of estrogen response in target cells (the progesterone receptor (PR) and the stress-responsive protein of 27 kDa (SRP27)) were studied in leiomyoma. The ER (estrogen receptor) and PR content were determined by conventional DCC exchange assays. Specific anti-ER, anti-PR and anti-SRP27 monoclonal antibodies were used in immunoblots and immunohistochemical (IHC) studies. The binding properties of PR from cytosol of leiomyoma showed a Kd of 0.8-1.3 nM, which is in the range described for other human tissues. 80% of all studied leiomyoma contained PR, in a range of 805-2000 fmol/mg protein. The Kd for leiomyoma ER was 0.1-0.9 nM, and 84% of the samples were positive for ER. The PR of leiomyoma has the two A and B forms of 120 and 94 kDa, as shown in the immunoblot using the AB52 anti-PR monoclonal antibody. The IHC study revealed that the PR is concentrated in the cell nuclei, in the form of perinuclear bodies, with a homogeneous staining pattern from cell to cell. The leiomyoma fibres contain SRP27 in a higher concentration than the healthy myometrium. The leiomyoma SRP27 shows a typical doublet of 24 kDa and 27 kDa in immunoblot, the same as in MCF-7 cells. The IHC study revealed a high degree of organization of SRP27 in leiomyoma cells, suggesting that this protein may be part of the cytoskeleton. The results obtained show that human leiomyomas contain ER, PR and RSP27 with similar immunological and biochemical properties to those of other human tissues, including the MCF-7 breast cancer cell line.  相似文献   

19.
We have studied protein acylation using [3H]myristate in the two leukemia cell lines HL-60 and HL-60 Blast II. The latter is a variant which does not differentiate after treatment with 12-O-tetradecanoyl phorbol 13-acetate (TPA). The acylation profiles of the two cell lines as examined by SDS-PAGE differed. TPA induced the myristylation of an approximately 82 kDa protein in the sensitive cells, but not in the resistant cells. Myristic acid was shown to be covalently linked to these proteins. Analysis of the cell lipids labelled with [3H]myristate showed that in contrast to observations with the proteins, the changes induced by TPA were observed in both TPA-sensitive and TPA-resistant cells. We conclude that the induction of myristylation may be an important step in the mechanism of differentiation.  相似文献   

20.
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and G?6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号