首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunohistochemical and biochemical studies were performed on the brains of adult female and male rats using a specific antibody against bovine adrenocortical cytochrome P-450scc. The results showed that in both male and female rats, the myelinated regions of the white matter are selectively immunostained throughout the brain and that even in rats pretreated with colchicine, there is never positive staining of neuronal cell bodies and their dendrites in any brain region. Western immunoblotting with the P-450scc antibody and enzymatic assays revealed that P-450scc and cholesterol side-chain cleavage activity were present in a homogenate derived from the cortical white matter, but not detectable in that from the cerebral cortex. Furthermore, quantitation of the P-450scc protein in the immunoblots indicated that the concentration of P-450scc in the cortical white matter of both female and male rat brains is approx. 3-4 pmol per mg tissue protein. Thus it could be concluded that in the adult rat brain, P-450scc and cholesterol side-chain cleavage activity are selectively localized only in the myelinated region of the white matter.  相似文献   

2.
Bovine adrenocortical calmodulin was purified and its general properties were examined. The latter were similar to those of bovine brain calmodulin. When added to a cytochrome P-450(11)beta-reconstituted system in the presence of dilauroylphosphatidylcholine, calmodulin decreased the rate of aldosterone production from corticosterone from 0.8 to 0.1 nmol/(min X nmol P-450), while it increased the rate of 18-hydroxycorticosterone production from 1.8 to 4.6 nmol/(min X nmol P-450). This effect of calmodulin on steroid production was maximum at a concentration of 1 microM, when 1 microM cytochrome P-450(11)beta was used. The effect was dependent on the presence of Ca2+, and maximal response was observed at less than 1 microM Ca2+. There was essentially no difference in the effect when bovine brain calmodulin was used. Calmodulin induced a change in the activity of cytochrome P-450(11)beta in the presence of a wide concentration range of corticosterone as a substrate. As for 18-hydroxycorticosterone production, calmodulin increased both the maximal activity and the apparent Km for corticosterone, but it decreased the apparent Km for adrenodoxin. Adrenodoxin at a concentration of less than 20 microM did not fully abolish the effect of calmodulin. A small type I difference spectrum appeared when calmodulin was added to cytochrome P-450(11)beta. The difference spectrum increased significantly in the presence of both Ca2+ and adrenodoxin. These results suggest that calmodulin interacts with cytochrome P-450(11)beta in the presence of adrenodoxin and then modulates the activity of aldosterone synthesis catalyzed by cytochrome P-450(11) beta.  相似文献   

3.
Addition of endozepine in nanomolar concentrations to a system for side-chain cleavage reconstituted from highly purified P-450scc and electron carriers (adrenodoxin reductase and adrenodoxin) stimulates the conversion of cholesterol to pregnenolone (side-chain cleavage). This response is concentration and time-dependent and specific to the extent that a second steroidogenic P-450 located in the inner mitochondrial membrane (ie 11 beta-hydroxylase) was not stimulated by endozepine. Homogeneous endozepine prepared from bovine brain, the corresponding genetically engineered peptide and des(glu-ilu)-endozepine isolated from bovine adrenal cortex are all approximately equipotent in this system. Moreover, endozepine accelerates the rate of reduction of P-450scc by NADPH and the electron carriers. The results suggest that endozepine acts directly on P-450 and hence the rate of side-chain cleavage.  相似文献   

4.
An iron-sulfur protein has been isolated from bovine brain mitochondria and purified 200-fold. The optical spectrum (peaks at 412 and 455 nm which disappear upon reduction) and the EPR spectrum (g values at 1.94 and 2.02) were typical for a ferredoxin. In reconstitution experiments, the protein could replace adrenodoxin in the cholesterol side chain cleavage reaction. The additional detection of cytochrome P-450 in brain mitochondria indicates that the isolated ferredoxin is part of a cytochrome P-450-dependent hydroxylation system.  相似文献   

5.
The immunochemical relatedness between human and bovine proteins catalyzing the cholesterol side-chain cleavage reaction was investigated. In dot-immunobinding analysis, antibodies against bovine adrenocortical cytochrome P-450SCC, adrenodoxin, and adrenodoxin reductase recognized the corresponding proteins in a dose-dependent manner in mitochondrial preparations from human placenta. Limited proteolysis with trypsin cleaved bovine P-450SCC into fragments F1 and F2, which represent the NH2- and C-terminal parts of P-450SCC, respectively. Identical trypsin treatment yielded similar-size fragments from human placental P-450SCC. In Western immunoblots, anti-F1 and anti-F2 antibodies recognized the corresponding fragments in both trypsin-digested bovine and human P-450SCC. Antibodies against bovine P-450SCC, fragments F1 and F2, adrenodoxin and adrenodoxin reductase inhibited cholesterol side-chain cleavage activity in bovine adrenocortical mitochondria by 24-51%, but failed to affect the activity in human placental mitochondria. These data indicate that human and bovine P-450SCC share common antigenic determinants located outside the enzyme active site. The immunological similarity between bovine adrenodoxin and human ferredoxin allowed for a simple purification protocol of human placental P-450SCC by adrenodoxin affinity chromatography. The P-450SCC obtained by this method was electrophoretically homogeneous and showed characteristics typical to P-450SCC.  相似文献   

6.
Immunochemical studies on cytochrome P-450 in adrenal microsomes   总被引:2,自引:0,他引:2  
An antibody was prepared against electrophoretically homogeneous cytochrome P-450C21 purified from bovine adrenal microsomes. This antibody was used to compare various cytochromes P-450 in bovine and guinea pig adrenal microsomes. In an Ouchterlony double diffusion test, a spur formation was observed between the precipitin lines of the purified bovine cytochrome P-450C21 and guinea pig adrenal microsomes against anti-cytochrome P-450C21 IgG. Anti-cytochrome P-450C21 IgG inhibited 21-hydroxylation both of bovine and guinea pig adrenal microsomes but the inhibition was much more effective in the bovine microsomes than in the guinea pig microsomes. These results suggest that the 21-hydroxylase in the guinea pig microsomes has some molecular similarities to the bovine cytochrome P-450C21 and a part of the antibodies cross-reacts with the 21-hydroxylase in the guinea pig microsomes. Anti-cytochrome P-450C21 IgG did not inhibit the activities of 17 alpha-hydroxylase and C17,20-lyase in the bovine and guinea pig microsomes but stimulated these activities. This result shows that different species of cytochrome P-450 other than cytochrome P-450C21 catalyzes the 17 alpha-hydroxylation and C17,20 bond cleavage. The stimulation of 17 alpha-hydroxylation and C17,20 bond cleavage by blocking 21-hydroxylation indicates that the electron transfer systems for various cytochromes P-450 are intimately linked in adrenal microsomes.  相似文献   

7.
8.
Rabbit antibodies against cytochrome P-450 (SCC), P-450 (11 beta), and P-450 (C-21) from bovine adrenal cortex were prepared, and it was confirmed that these three cytochrome P-450 species are immunologically distinct from one another. Cytoplasmic sites of synthesis of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) in bovine adrenal cortex were determined by examining the presence of their nascent peptides on isolated free and bound ribosomes. Nascent peptides were released in vitro from ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) were isolated by immunoprecipitation. The nascent peptides of these three cytochrome P-450 species were found in both free and bound ribosomal fractions, suggesting that they share common sites of synthesis in the cytoplasm. However, the nascent peptides of mitochondrial P-450 (SCC) and P-450 (11 beta) were more concentrated in the free ribosomal fraction, whereas those of microsomal P-450 (C-21) were more abundant in the bound ribosomal fraction. The nascent peptides of the three cytochrome P-450 species were released from the membrane-bound ribosomes of rough microsomes into the cytoplasmic surface of microsomal vesicles by puromycin treatment.  相似文献   

9.
Maturation of the precursor forms of bovine cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) and 11 beta-hydroxylase cytochrome P-450 (P-450(11)beta) was investigated using mitochondria from bovine corpus luteum. The results show that both precursors, whose synthesis was directed by bovine adrenocortical RNA, can be imported and proteolytically processed to their corresponding mature forms by bovine corpus luteal mitochondria, even though P-450(11)beta is not expressed in this tissue. Furthermore, the efficiency of processing of pre-P-450(11)beta by corpus luteal mitochondria is similar to that of pre-P-450SCC, an endogenous enzyme of these mitochondria. However, the P-450(11)beta precursor is not processed by mitochondria from a nonsteroidogenic tissue (heart), a result observed previously for the P-450SCC precursor (M. F. Matocha and M. R. Waterman (1984) J. Biol. Chem. 259, 8672-8678). This discriminatory processing of pre-P-450(11)beta by heterologous mitochondria suggests that the precursor forms of P-450SCC and P-450(11)beta are processed via a common pathway in steroidogenic mitochondria and that this pathway is absent in nonsteroidogenic mitochondria.  相似文献   

10.
We isolated 4 different clones of the P-450(11 beta) gene from a bovine genomic library. These genomic clones were highly homologous with each other. Two of the isolated clones were pseudogenes. Determination of its nucleotide sequences indicated that the bovine P-450(11 beta) gene is divided into 9 exons by 8 introns and that it is about 8.5 kb in total length. The number of exons and the locations of intron insertion into the P-450(11 beta) gene are identical with those in the case of P-450(SCC), but different from those of other microsomal P-450s.  相似文献   

11.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

12.
18-Hydroxylation of deoxycorticosterone was studies with rat or bovine adrenal mitochondria or with reconstituted systems obtained from these fractions. The reconstituted systems consisted of a partially purified preparation of cytochrome P-450 from rat adrenals and a partially purified NADPH-cytochrome P450 reductase preparation from bovine adrenals. In some experimenta a soluble cytochrome P-450 fraction from bovine adrenals was used. Adrenodoxine and adrenodoxine reductase were shown to be the active components of the NADPH-cytochrome P-450 reductase preparation. Optimal assay conditions were determined for 18-hydroxylation by the crude mitochondrial fraction as well as by the reconstituted systems. In the presence of excess NADPH-cytochrome P-450 reductase fraction, the rate of 18-hydroxylation was linear with time and with the amount of cytochrome P-450. In incubations with intact rat adrenal mitochondria to which Ca2+ and an excess NADPH had been added, NADPH-cytochrome P-450 reductase increased the rate of 18-hydroxylation about 100%, indicating that NADPH-cytochrome P-45o reductase was to some extent rate-limiting. The rate of 18-hydroxylation of deoxycorticosterone by the reconstituted system as well as by intact mitochondrial fraction was much higher than the rat of 18-hydroxylation of corticosterone and progesterone. When the cytochrome P-450 preparation from rat adrenals in the reconstituted system was substituted for cytochrome P-450 from bovine adrenals, the rate of 18-hydroxylation decreased considerably. Under all experimental conditions, the 18-hydroxylation of deoxycorticosterone occurred with a concomitant and efficient 11beta-hydroxylation. Provided the source of cytochrome P-450 was the same, the ratio between 11beta- and 18hydroxylation was constant under all conditions and was not significantly different in the presence of metopirone, carbon monoxide, cytochrome c or different steroids. It is suggested that identical or at least very similar types of cytochrome P-450 are involved in 11beta- and 18-hydroxylation of deoxycorticosterone.  相似文献   

13.
The developmental expression of adrenocortical steroid hydroxylases was studied in bovine fetuses from 40 to 280 days gestational age. The expression of P-450(17 alpha) is first detected at a gestational age of 50 days and reaches a maximum at 60-70 days. The expression of P-450(17 alpha) then declines and is nondetectable at a gestational age of 100 days. P-450(17 alpha) is not expressed again until about 240 days, i.e. shortly before birth (approximately 280 days). P-450scc, P-450c21, P-450(11 beta) and adrenodoxin were present in fetal adrenals throughout gestation. This "on-off-on" pattern of P-450(17 alpha) expression during fetal development was associated with a corresponding episodic production of cortisol. Immunoreactive corticotropin (ACTH) levels in fetal plasma were elevated in small fetuses (corresponding to less than or equal to 100 days) and in near-term fetuses (corresponding to greater than 250 days) compared with those in mid-gestation fetuses. In primary culture, adrenal cells from mid-gestation fetuses contained no detectable P-450(17 alpha) but rapidly responded to ACTH with an increase in P-450(17 alpha) protein and mRNA. The tissue specificity of the developmental patterns is emphasized by the fact that both P-450(17 alpha) and P-450scc were detectable throughout the development of the fetal testes, whereas only P-450scc was detectable in fetal bovine ovary prior to 200 days. Thus, in fetal bovine adrenal it appears that ACTH is the major regulatory factor effecting the intermittent presence of P-450(17 alpha), whereas the presence of the other steroid hydroxylases is either regulated by additional factors or shows a much different sensitivity to ACTH.  相似文献   

14.
Bovine steroid 21-hydroxylase: regulation of biosynthesis   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
Bovine adrenal P-45011 beta catalyzes the 11 beta- and 18-hydroxylation of corticosteroids as well as aldosterone synthesis. These activities of P-45011 beta were found to be modulated by another mitochondrial cytochrome P-450 species, P-450scc. The presence together of P-45011 beta and P-450scc in liposomal membranes was found to remarkably stimulate the 11 beta-hydroxylase activity of P-45011 beta and also stimulate the cholesterol desmolase activity of P-450scc. The stimulative effect of P-450scc on 11 beta-hydroxylase activity diminished by the addition of protein-free liposomes to proteoliposomes containing P-45011 beta and P-450scc, thus showing P-450scc to interact with P-45011 beta in the same membranes. Kinetic analysis of this effect indicated the formation of an equimolar complex between P-45011 beta and P-450scc on liposomal membranes. P-45011 beta in the complex had not only stimulated activity for 11 beta- and 18-hydroxylation of 11-deoxycorticosterone but also suppressed activity for production of 18-hydroxycorticosterone and aldosterone. When the inner mitochondrial membranes of zona fasciculata-reticularis from bovine adrenal were treated with anti-P-450scc IgG, aldosterone formation was stimulated to a greater extent than that of zona glomerulosa. This indicates the aldosterone synthesizing activity of P-45011 beta in the zona fasciculata-reticularis to be suppressed by interaction with P-450scc. The zone-specific aldosterone synthesis of P-45011 beta in bovine adrenal may possibly be induced by differences in interactions with P-450scc of mitochondrial membranes in each zone.  相似文献   

17.
The interaction of cholesterol with phospholipids has been studied with a variety of techniques; however, the possible consequences of such interactions in vivo have not been demonstrated. In this study, the cholesterol-dependent absorbance spectrum of cytochrome P-450scc was used to monitor cholesterol availability in both micellar and vesicular environments. By use of this approach, in conjunction with titration of putative cholesterol binding species, a tight, approximately equimolar complex of cholesterol and digitonin was demonstrated. Sphingomyelin (SM) (both the synthetic N-palmitoyl and bovine brain forms) gave sigmoidal titration curves, suggesting a cooperative interaction between this lipid and cholesterol. The interaction of bovine brain glycerolipids and cholesterol was weaker than that of SM and showed no cooperativity. The importance of the phospholipid head group in these interactions was established by the differences in the ability of synthetic 1-palmitoyl-2-oleoylphosphatidylcholine, -phosphatidylethanolamine, and -phosphatidylserine to affect cholesterol availability. Comparison of these results with those of the bovine brain phospholipids indicates that the acyl chain composition of these molecules is also important to these interactions. Titrations of SM in phospholipid vesicles containing cytochrome P-450scc and different types of phosphatidylcholine established that the SM-cholesterol interactions also occur in a bilayer membrane. This study demonstrates that the association of cholesterol with cytochrome P-450scc is inhibited by concentrations of SM commonly found in biological membranes. Therefore, such cholesterol-lipid interactions can potentially affect the function of membrane enzymes.  相似文献   

18.
The relationship between NADPH-dependent lipid peroxidation and the degradation of cytochrome P-450 has been studied in bovine adrenal cortex mitochondria. Malondialdehyde formation is accompanied by a corresponding decrease in total cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of P-450. To differentiate between cytochrome P-450(11)beta and P-450scc, steroid-induced difference spectra were used to evaluate P-450 degradation. These measurements provide the first evidence that both P-450's are degraded during NADPH-dependent lipid peroxidation with P-450(11)beta being much more susceptible to this process.  相似文献   

19.
Isolated bovine adrenal cortex mitochondria imported in vitro synthesized pre-P-450(SCC) and processed it to the mature form. Partial radio-sequencing of the processed P-450(SCC) gave a result identical with that for authentic P-450(SCC). Rat liver mitochondria also imported pre-P-450(SCC) and processed it to the mature form, whereas bovine heart mitochondria were unable to import and process pre-P-450(SCC) although both mitochondrial preparations imported and processed pre-adrenodoxin. The pre-P-450(SCC) processing activity of bovine adrenal cortex mitochondria was associated with the matrix side surface of the inner membrane. The processing protease could be solubilized by sodium cholate and partially purified by ammonium sulfate fractionation. The partially purified processing protease cleaved pre-P-450(SCC) at the correct position. It was also active in processing pre-P-450(11 beta) but inactive toward pre-adrenodoxin. Bovine heart mitochondria lacked the processing activity to pre-P-450(SCC). The localization of pre-P-450(SCC) and mature P-450(SCC) in bovine adrenal cortex mitochondria was examined. Mature P-450(SCC) processed by the mitochondria was found associated with the matrix-side surface of the inner membrane, which is the correct location of P-450(SCC) in the cell. In the presence of o-phenanthroline, pre-P-450(SCC) was imported into the organelles without being processed and remained soluble in the matrix. The incorporation of newly processed mature P-450(SCC) into the inner membrane was also observed when pre-P-450(SCC) was incubated with inner membrane vesicles. Mature P-450(SCC) generated in vitro from pre-P-450(SCC) by the partially purified processing protease was incorporated not only into the inner membrane vesicles but also into bovine adrenal cortex microsomes. These findings suggested that the processing of pre-P-450(SCC) occurred prior to the incorporation of mature-P-450(SCC) into the inner membrane.  相似文献   

20.
We have previously demonstrated the presence of cytochrome P-450 in a soluble preparation of bovine brain mitochondria (Oftebro, H., St?rmer, F.C., and Pedersen, J.I. (1979) J. Biol. Chem. 254, 4331). In the present work we show that this preparation, in the presence of NADPH, adrenodoxin and adrenodoxin reductase catalyzes omega-hydroxylation of a number of C27-steroids that are intermediates in bile acid biosynthesis. The rates of hydroxylation were 1-2 order of magnitudes lower than reported for similar preparations from rat and human liver. No significant activity was detected with cholesterol as substrate. The physiological significance of brain mitochondrial cytochrome P-450 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号