首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Light-microscopic immunocytochemistry and routine staining techniques were used to localize insulin and somatostatin-immunoreactive cells within the endocrine pancreatic tissue of the lamprey, Petromyzon marinus, during various stages of the life cycle. The endocrine pancreas of larvae consists solely of follicles of insulin-immunoreactive cells surrounding the junction of oesophagus, intestine and bile duct. Somatostatin-immunoreactive cells are restricted to the intestinal epithelium. In both parasitic and upstream-migrating adults the endocrine pancreas consists of cranial and caudal portions, both containing separate populations of insulin and somatostatin-immunoreactive cells.Supported by NSERC of Canada grant no. A5945 to JHY  相似文献   

2.
Summary The sequence of morphological changes in the retinal pigment epithelium during the metamorphic period of the sea lamprey Petromyzon marinus L. has been investigated using electron microscopy. At early metamorphic stages (stages I and II), photoreceptors are present in a small zone of the retina. During these stages, the lateral surface of the epithelial cells shows zonulae occludentes and adhaerentes. The degree of cell differentiation varies throughout the retinal pigment epithelium. Cells covering the differentiated photoreceptors in the central retina have phagosomes, whereas pigment granules appear only in the retinal pigment epithelium dorsal to the optic nerve head. Most epithelial cells have myeloid bodies; their morphology is more complex around the optic nerve head. At stage III, when photoreceptors develop over the whole retina, the distribution of cytoplasmic organelles is almost homogeneous in the retinal pigment epithelium. Subsequently, the basal plasma membrane of the epithelial cells becomes progressively folded and their apical processes enlarged. In addition, extensive gap junctions develop between retinal pigment cells. In late metamorphic stages, noticeable growth of myeloid bodies occurs and consequently the retinal pigment epithelium resembles that of the adult. This study also describes, for the first time, the presence of wandering phagocytes in the retinal pigment epithelium of lampreys; their role in melanosome degradation is discussed.  相似文献   

3.
Light-microscopic histochemistry and conventional electron microscopy were used to study the changes to the subepithelial layers in the larval esophagus of the sea lamprey Petromyzon marinus during metamorphosis. During early stages of metamorphosis, smooth muscle cells of the muscularis mucosae and tunica muscularis dedifferentiate into myofibroblast-like cells, which make contact with the basal lamina of the overlying mucosal epithelium. During later stages, these myofibroblast-like cells redifferentiate into smooth muscle cells, reforming the muscularis mucosae and tunica muscularis. Alterations to the extracellular matrix occur concomitantly.  相似文献   

4.
Synopsis Seasonal changes in blood, liver and muscle substrate (glucose, glycogen and lipid) concentrations and enzyme (pyruvate kinase (PyK), fructose diphosphatase (FDPase), NADP-isocitrate dehydrogenase (ICDH), malic enzyme (ME) and the hexose monophosphate shunt dehydrogenases (HMSD)) activities were assessed in ammocoete and metamorphosing stages of a stream stock of the landlocked sea lamprey, Petromyzon marinus L. In all developmental stages studied, muscle rather than liver tissue served as the main site of carbohydrate and fat storage. Blood glucose and muscle lipid exhibited a positive relationship while liver HMSD and muscle ME activity, a negative relationship, with ammocoete weight. These responses were attributed to a proliferation of red fibers and adipocytes in the ammocoete muscle as the time of metamorphosis approched. Muscle lipid stores of ammocoetes in their last year of larval life increased dramatically during the fall and winter preceding metamorphosis. Changes in tissue enzyme activity of ammocoetes in their last year of larval life indicated that the liver was the site of amino acid incorporation into fat while muscle was the site of lipogenesis from glucose. During the non-trophic period of metamorphosis, stored material was catabolized to provide energy for protein synthesis.  相似文献   

5.
Summary Antibodies made against thyroglobulin (TG) were used in an immunocytochemical study for the light and electron microscopic localization of TG in the thyroid gland of the anadromous sea lamprey, Petromyzon marinus, during its upstream migration. TG was found in the follicular lumen and in some colloid droplets within the follicular cells. Except for an immunoreactive product observed in a small portion of the interstitial connective tissue, the location of TG in the lamprey was similar to that in the thyroid of the rat.Supported by National Research Council of Canada Grant no. A5945 to J.H.Y. We thank Dr. F.W.W. Beamish and Mr. R. Robinson who helped in the capture of the lamprey  相似文献   

6.
Two immunoreactive forms of gonadotropinreleasing hormone (GnRH), lamprey GnRH-I and lamprey GnRH-III, were found in neurons in larval sea lampreys (Petromyzon marinus). Using antisera preferentially directed against either lamprey GnRH-I or-III, dense reaction product was seen in cell bodies in the rostral hypothalamus and preoptic area. Reaction product was also dense in fibers to and within the neurohypophysis, in addition to numerous fibers which projected caudally, beyond the neurohypophysis through the mesencephalon. The majority of immunoreactive GnRH was lamprey GnRH-III, and when lamprey GnRH-I was seen, it was in cells that appeared to contain both forms of GnRH. A small number of cells found in the caudal hypothalamus contained only immunoreactive lamprey GnRH-III, and these may constitute a functional subgroup within the population of GnRH neurons. In animals undergoing metamorphosis there was a large increase in reaction product in all GnRH-containing cells and fibers. A striking change within the distribution of GnRH cells was localized to a distinct group of GnRH-immunoreactive cells (GnRH-I and-III) in the ventral anterior hypothalamic area. These cells were minimally detectable in larvae, but during metamorphosis became densely filled with immunoreactive product in perikarya and distal processes. The results are consistent with the hypothesis that lamprey GnRH-III is an important form of GnRH during the maturation of GnRH cells and fibers, and further indicates that these cells have attained their normal positions in the preoptic area and hypothalamus before metamorphosis.  相似文献   

7.
Ammocoete larvae of the sea lamprey Petromyzon marinus, a member of the primitive vertebrate class Agnatha, were tested for thermoregulatory behavior in an electronic shuttlebox (ichthyotron). The final preferendum derived from pooled data for 24 individually tested ammocoetes was characterized by a mean of 13.6 ± 0.17 (s.e.m.)°C, a mode and median of 140°C, and a range of voluntarily occupied temperatures from 10–19°C over a 3-day period.  相似文献   

8.
Four types of acidophilic granular cells, in addition to B-cells, are identified in the islet organ of anadromous specimens of two subspecies of Petromyzon marinus by light and electron microscopy. Three of these acidophils (PI, PII and PIV-cells) occur in both the cranial and hepatic islets while a fourth type (PIII-cell) has only been found in the hepatic islet of some animals. The granules of the PI-cells stain with ponceau de xylidine, give a distinct tryptophan reaction and in ultrastructural examination show large, dense granules. The PII-cells contain unusual crystals and appear to be a non-secretory stage of the PI. The PIII-cells stain deep-red and acid fuchsin. They contain very large, dense granules and some lysosomes. PIV-cells stain selectively with phosphotungstic acid-hematoxylin and ultrastructurally, contain small, more or less dense granules. It appears that PI- and PIV-cells develop directly from B-cells, while the PIII-cells derive from PI-cells. despite their direct or indirect origin from B-cells, the PI-, PIII- and PIV-cells show characteristic features of functionally independent endocrine cells. Petromyzon marinus may be an ideal model for the understanding of phylogenetic and pathological interrelationships between islet and gastrointestinal hormones. It is clear that the interpretation of the islet organ of the cyclostomes, which has been generally considered a source of insulin only, requires a revaluation.  相似文献   

9.
Physiological and immuno-blotting experiments were used to determine whether the red blood cell membrane of a primitive vertebrate, the sea lamprey Petromyzon marinus, contained a counterpart similar to the vertebrate anion exchange protein known as AE1 or band 3. Results of the physiological experiments which measured CO2 production after adding H14CO 3 - to the extracellular saline, indicated significant transmembrane bicarbonate movement in lamprey blood which unlike that in most vertebrates, was insensitive to inhibition by 4,4 diisothiocyanatostilbene-2,2 disulfonic acid. The present study also showed that lamprey red blood cells possess acetazolamide-sensitive carbonic anhydrase which is an important component of CO2 production by vertebrate red blood cells. Polyclonal immunoglobulins against a 12 amino acid domain in the C-terminus of the mouse AE1 recognized a trout red blood cell membrane protein with a relative molecular mass of 97 kDa, but failed to immunoreact with any membrane proteins from the red blood cells of lamprey. Antibodies against trout AE1 immunoreacted with trout red blood cell membrane proteins of approximately 97 kDa, 200 kDa and >200 kDa. Interestingly, only a 200-kDa membrane protein from the red blood cells of the primitive lamprey immunoreacted with the trout anti-AE1 immunoglobulin proteins. Therefore, lamprey red blood cells appear to possess an AE1-like protein that may be physiologically different than that in most other vertebrates.  相似文献   

10.
11.
12.
We characterized the behavioral and neuroendocrine responses of adult sea lampreys (Petromyzon marinus) to weak electric fields. Adult sea lampreys, captured during upstream spawning migration, exhibited limited active behaviors during exposure to weak electric fields and spent the most time attached to the wall of the testing arena near the cathode (−). For adult male sea lampreys, exposure to weak electric fields resulted in increased lamprey (l) GnRH-I mRNA expression but decreased lGnRH-I immunoreactivities in the forebrain, and decreased Jun (a neuronal activation marker) mRNA levels in the brain stem. Similar effects were not observed in the brains of female sea lampreys after weak electric field stimulation. The influence of electroreception on forebrain lGnRH suggests that electroreception may modulate the reproductive systems in adult male sea lampreys. The changes in Jun expression may be associated with swimming inhibition during weak electric field stimulation. The results for adult sea lampreys are the opposite of those obtained using parasitic-stage sea lampreys, which displayed increased activity during and after cathodal stimulation. Our results demonstrate that adult sea lampreys are sensitive to weak electric fields, which may play a role in reproduction. They also suggest that electrical stimuli mediate different behaviors in feeding-stage and spawning-stage sea lampreys.  相似文献   

13.
The events in the transformation of the intestine of the larval lamprey into the adult intestine were followed through the seven (1–7) stages of metamorphosis in anadromous Petromyzon marinus L. Light and electron-microscope observations demonstrated that the processes of degeneration, differentiation, and proliferation are involved in the transformation. In the anterior intestine, degeneration of cells and the extrusion of others into the lumen results in the disappearance of secretory (zymogen) cells and the decline in numbers of endocrine and ciliated cells. Larval absorptive cells, with a prominent brush border, are believed to dedifferentiate into unspecialized columnar cells with few microvilli. Degeneration and removal of cells occurs by both autophagy and heterography and cells extruded into the lumen in the anterior intestine are phagocytosed by epithelial cells of the posterior intestine. The loss of epithelial cells during transformation results in the folding and degradation of parts of the basal lamina and in an extensive widening of the lateral intercellular spaces in all parts of the intestine. As metamorphosis is a nontrophic period of the lamprey life cycle, the possible morphological effects of starvation on the intestinal epithelium are discussed. The development of longitudinal folds is a consequence of the events of metamorphic transformation of the intestinal mucosa. Although an interaction between the epithelium and the underlying tissues is believed to be importent, the actual mechanism of fold development is unknown. The intestinal epithelium of adult lampreys develops from surviving cells of the larval (primary) epithelium. Unlike the situation in amphibians, there does not appear to be a group (nest) of undifferentiated larval cells which differentiate into the adult (secondary) epithelium. Instead, in lampreys, columnar cells that persist through the degradative processes seem to be the source of absorptive and ciliated cells and probably are responsible for mucous and secretory cells. Preliminary observations indicate that the intestinal epithelium of feeding adults is specialized into an anterior region which liberates a secretion, absorbs lipid, and possesses the machinery for ion transport. A posterior region absorbs lipid, secretes mucus, and likely is involved in some protein absorption.  相似文献   

14.
Electron microscopy was used to follow the transformation of the endostyle to a thyroid gland in the anadromous sea lamprey, Petromyzon marinus L., throughout metamorphosis (stages 1–7). Transformation of the larval (ammocoete) endostyle begins at the first signs of external change (stages 1–2), and the adult form of the gland is reached by stage 5. Only slight modifications of the gland accompany further development to the end of metamorphosis. Development of the thyroid gland involves degeneration, proliferation, and reorganization of the cells in the endostyle, and changes in their fine structure. Ultrastructural changes during early stages are most obvious in the type 1 cells that make up the shrinking glandular tracts, and involves the accumulation of cytoplasmic microfilaments and a variety of cytoplasmic inclusions. The glandular tracts and their cells gradually disappear through autolysis and, apparently, through phagocytosis by neighboring epithelial cells and macrophages. Although the fine structure of the type 2, 3, 4, and 5 cells is not altered in the early stages, by stage 3, many of these cells become either vacuolated, undergo autolysis, or are extruded. Phagocytosis of some of each of these cell types likely occurs. Thyroid follicles are first observed during stage 4. Some of their lumina seem to arise from the accumulation of material in intercellular spaces and from vacuoles among cell clusters. Other lumina may represent a portion of the original lumen of the endostyle. Many follicles appear to be comprised of cells with cytological characteristics similar to those of larval cell types 3 and 2c. Some of the other larval cell types, such as type 5, may also be involved. In young adult lampreys follicles are composed of cuboidal to columnar cells that lack the dilated cisternae of rough endoplasmic reticulum seen in follicular cells of higher vertebrates. Dense collagenous connective tissue surrounding the follicles contains relatively few blood vessels. The transformation process described may have some relevance to our understanding of the development and evolution of the vertebrate thyroid gland.  相似文献   

15.
Nest building relates to reproductive effort, sexual selection, intersexual conflict and cooperation and may be linked to individual phenotype and interindividual interactions. In particular, larger individuals having more energy reserves are expected to build more, larger nests, without having to trade intrasexual competition for cooperative nest building. Capture–mark–recapture and nest survey of sea lamprey (Petromyzon marinus L. 1758) were combined to assess the relationship between individuals and nesting activity on a spawning ground, throughout a breeding season, during which 202 nests were observed and 114 individuals were captured. On average, males and females stayed 8.33 ± 1.02 and 3.57 ± 1.04 days on the spawning ground, visited 2.26 ± 1.72 and 1.67 ± 1.17 nests and encountered 2.33 ± 2.13 mates for males and 2.29 ± 1.32 mates for females, respectively, and the number of mates encountered increased with the number of nests visited. Body size had no effect on the duration of presence on spawning ground, number of nests visited, number of individuals per nest and sex ratio on nest or nest volume. Bigger nests were found at the end of the season and were not necessarily built by more individuals. This work brings insights on the mating system and cooperative nest building in sea lamprey and may inform managers who want to estimate sea lamprey populations via nest surveys.  相似文献   

16.
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.  相似文献   

17.
Almeida  P.R.  Quintella  B.R.  Dias  N.M. 《Hydrobiologia》2002,483(1-3):1-8
The available spawning habitat for the anadromous sea lamprey, Petromyzon marinus L., population that enters the River Mondego has been drastically reduced in the last 20 years. The installation of a fish passage in the first impassable dam, the Açude-Ponte, would enable sea lamprey to recolonise the 34.6-km river stretch between the Açude-Ponte and Raiva dams. In order to assess the suitability of the upstream river stretches for this species, 10 radio-tagged sea lamprey were released upstream of the Açude-Ponte dam and tracked continuously throughout the entire migratory path. Lamprey were unable to pass over intact weirs that had been built for recreational purposes. Sea lamprey movements were more frequent during dusk and night than other periods. Increased river discharge at night, resulting from the operation of the Raiva power station, stimulated lamprey movements but reduced ground speeds recorded. After reaching a certain location, some of the animals maintained their position for several weeks, before undergoing a new movement. Two of the main tributaries of this river stretch were used by some sea lamprey, indicating that the animals were able to find these historical spawning grounds.  相似文献   

18.
The main objective of this study was to compare the morphological variability of sea lamprey (Petromyzon marinus L.) larvae from the main Portuguese river basins. Samples were collected in rivers Minho, Lima, Cávado, Vouga, Mondego, Tejo and Guadiana. Specimens were analysed in terms of morphometric (linear body measures) and meristic (number of myomeres) characters to investigate the hypothesis of population fragmentation between river basins caused by some degree of homing behaviour. The discriminant analysis showed a morphological segregation of the studied populations based on the characters head, tail and branchial length. The discriminatory power of the meristic characters was comparatively weaker, with the number of trunk myomeres, and to some extent the head myomeres, being responsible for the reduced separation between groups. Both analyses were consistent in identifying the cephalic region as the most important morphological feature to discriminate populations of sea lamprey larvae in the Portuguese territory. The largest cephalic region of the ammocoetes sampled in the northern river basins may be responsible for a better feeding efficiency and, consequently, higher values of condition factor. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

19.
20.
Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号