首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP).

Findings

We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype.

Conclusions

Thus, we propose to name the c.[349 T > C] allele in donkeys, the anlp allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0112-x) contains supplementary material, which is available to authorized users.  相似文献   

3.
Skin color, a predictor of social interactions and risk factor for several types of cancer, is due to two contrasting forms of melanin, the darker eumelanin and lighter phaeomelanin. The lighter pigment phaeomelanin is the product of the antagonistic function of the agouti signaling protein (ASIP) on the -melanocyte stimulating hormone receptor (MC1R). Studies have shown that a single-nucleotide polymorphism (SNP) in the 3UTR of the ASIP gene is associated with dark hair and eyes; however, little is known about its role in inter-individual variation in skin color. Here we examine the relationship between the ASIP g.8818A>G SNP and skin color (M index) as assessed by reflectometry in 234 African Americans. Analyses of variance (ANOVA) were performed to evaluate the effects of ASIP genotypes, age, individual ancestry, and sex on skin color variation. Significant effects on M index variation were observed for ASIP genotypes (F(2,236)=4.37, P=0.01), ancestry (F(1,243)=37.2, P<0.001), and sex (F(1,244)=4.08, P=0.05). Subsequent analyses revealed a strong effect on M index from ASIP genotypes in African American females (P<0.001). Our study suggests that the ASIP G>A polymorphism exhibits a dominant effect leading to lighter skin color and that variation in the ASIP gene may have been one of several factors contributing to reductions in pigmentation in some populations. Further study is needed to reveal how interactions between ASIP and several other genes, such as MC1R and P, predict human pigmentation.  相似文献   

4.
5.
6.
The agouti-signaling protein (ASIP) plays a major role in mammalian pigmentation as an antagonist to melanocortin-1 receptor gene to stimulate pheomelanin synthesis, a major pigment conferring mammalian coat color. We sequenced a 352 bp fragment of ASIP gene spanning part of exon 2 and part of intron 2 in 215 animals representing six goat breeds from Nigeria and the United States: West African Dwarf, predominantly black; Red Sokoto, mostly red; and Sahel, mostly white from Nigeria; black and white Alpine, brown and white Spanish and white Saanen from the US. Twenty haplotypes from nine mutations representing three intronic, one silent and five missense (p.S19R, p.N35K, p.L36V, p.M42L and p.L45W) mutations were identified in Nigerian goats. Approximately 89 % of Nigerian goats carry haplotype 1 (TGCCATCCG) which seems to be the wild type configuration of mutations in this region of the gene. Although we found no association between these polymorphisms in the ASIP gene and coat color in Nigerian goats, in-silico functional analysis predicts putative deleterious functional impact of the p.L45W mutation on the basic amino-terminal domain of ASIP. In the American goats, two intronic mutations, g.293G>A and g.327C>A, were identified in the Alpine breed, although the g.293G>A mutation is common to American and Nigerian goat populations. All Sannen and Sahel goats in this study belong to haplotypes 1 of both populations which seem to be the wild-type composite ASIP haplotype. Overall, there was no clear association of this portion of the ASIP gene interrogated in this study with coat color variation. Therefore, additional genomic analyses of promoter sequence, the entire coding and non-coding regions of the ASIP gene will be required to obtain a definite conclusion.  相似文献   

7.
We have examined the frequency of SNP polymorphisms within the melanocortin-1 receptor (MC1R) and agouti signaling protein (ASIP) genes in 114 Korean vitiligo patients and 111 normal controls to assess the association of these loci with vitiligo risk. Using direct sequencing techniques, we found the following five MC1R coding region SNPs: Arg67Gln (G200A), Val92Met (G274A), Ile120Thr (T359C), Arg160Arg (C478A), and Gln163Arg (A488G). Of these, the most common were Val92Met at 14% in patients vs. 9% in controls (P = 0.17) and Gln163Arg at 17% in patients vs. 17% in controls (P = 0.84). Presence of the A allele of Val92Met (G274A) was higher in vitiligo patients [P = 0.12, odds ratio (OR) [95% confidence interval (CI)] = 1.68 (0.86-3.25)]. The other three variants showed a frequency <5% of both patients and controls. The ASIP 3'UTR genotype (g.8818A-G) was also assessed in the same subjects. The frequency of the G allele of 3'UTR in ASIP was 17% in vitiligo and 12% in controls [P = 0.14, OR (95% CI) = 1.49 (0.87-2.54)]. Carriage of the G allele was higher in vitiligo patients [P = 0.17, OR (95% CI) = 1.50 (0.83-2.72)], and those who also carried MC1R Val92Met were more prone to vitiligo [eight of 111 patients vs. four of 111 in controls, P = 0.14, OR (95% CI) = 2.75 (0.71-8.69)]. None of these associations, however, reached statistical significance.  相似文献   

8.
9.
Coat color genetics, when successfully adapted and applied to different mammalian species, provides a good demonstration of the powerful concept of comparative genetics. Using cross-species techniques, we have cloned, sequenced, and characterized equine melanocortin-1-receptor (MC1R) and agouti-signaling-protein (ASIP), and completed a partial sequence of tyrosinase-related protein 1 (TYRP1). The coding sequences and parts of the flanking regions of those genes were systematically analyzed in 40 horses and mutations typed in a total of 120 horses. Our panel represented 22 different horse breeds, including 11 different coat colors of Equus caballus. The comparison of a 1721-bp genomic fragment of MC1R among the 11 coat color phenotypes revealed no sequence difference apart from the known chestnut allele (C901T). In particular, no dominant black (E D) mutation was found. In a 4994-bp genomic fragment covering the three putative exons, two introns and parts of the 5′- and 3′-UTRs of ASIP, two intronic base substitutions (SNP-A845G and C2374A), a point mutation in the 3′-UTRs (A4734G), and an 11-bp deletion in exon 2 (ADEx2) were detected. The deletion was found to be homozygous and completely associated with horse recessive black coat color (A a /A a ) in 24 black horses out of 9 different breeds from our panel. The frameshift initiated by ADEx2 is believed to alter the regular coding sequence, acting as a loss-of-function ASIP mutation. In TYRP1 a base substitution was detected in exon 2 (C189T), causing a threonine to methionine change of yet unknown function, and an SNP (A1188G) was found in intron 2. Received: 22 November 2000 / Accepted: 07 February 2001  相似文献   

10.
Structures of the agouti signaling protein   总被引:9,自引:0,他引:9  
Expression of the agouti signaling protein (ASIP) during hair growth produces the red/yellow pigment pheomelanin. ASIP, and its neuropeptide homolog the agouti-related protein (AgRP) involved in energy balance, are novel, paracrine signaling molecules that act as inverse agonists at distinct subsets of melanocortin receptors. Ubiquitous ASIP expression in mice gives rise to a pleiotropic phenotype characterized by a uniform yellow coat color, obesity, overgrowth, and metabolic derangements similar to type II diabetes in humans. Here we report the synthesis and NMR structure of ASIP's active, cysteine-rich, C-terminal domain. ASIP adopts the inhibitor cystine knot fold and, along with AgRP, are the only known mammalian proteins in this structure class. Moreover, ASIP populates two distinct conformers resulting from a cis peptide bond at Pro102-Pro103 and a coexistence of cis/trans isomers of Ala104-Pro105. Pharmacologic studies of Pro-->Ala mutants demonstrate that the minor conformation with two cis peptide bonds is responsible for activity at all MCRs. The loop containing the heterogeneous Ala-Pro peptide bond is conserved in mammals, and suggests that ASIP is either trapped by evolution in this unusual configuration or possesses function outside of strict MCR antagonism.  相似文献   

11.
There will be no difficulty in seeing how and by what mixtures the colors are made … He, however, who should attempt to verify all this by experiment would forget the difference of the human and the divine nature. For God only has the knowledge and also the power which are able to combine many things into one and again resolve the one into many. But no man either is or ever will be able to accomplish either the one or the other operation.The law of proportion according to which the several colors are formed, even if a man knew he would be foolish in telling, for he could not give any necessary reason, nor indeed any tolerable or probable explanation of them (Jowett, 1871).  相似文献   

12.
In mice and humans, binding of alpha-melanocyte--stimulating hormone to the melanocyte-stimulating--hormone receptor (MSHR), the protein product of melanocortin-1 receptor (MC1R) gene, leads to the synthesis of eumelanin. In the mouse, ligation of MSHR by agouti signaling protein (ASP) results in the production of pheomelanin. The role of ASP in humans is unclear. We sought to characterize the agouti signaling protein gene (ASIP) in a group of white subjects, to assess whether ASIP was a determinant of human pigmentation and whether this gene may be associated with increased melanoma risk. We found no evidence of coding-region sequence variation in ASIP, but detected a g.8818A-->G polymorphism in the 3' untranslated region. We genotyped 746 participants in a study of melanoma susceptibility for g.8818A-->G, by means of polymerase chain reaction and restriction fragment--length polymorphism analysis. Among the 147 healthy controls, the frequency of the G allele was.12. Carriage of the G allele was significantly associated with dark hair (odds ratio 1.8; 95% confidence interval [CI] 1.2--2.8) and brown eyes (odds ratio 1.9; 95% CI 1.3--2.8) after adjusting for age, gender, and disease status. ASIP g.8818A-->G was not associated independently with disease status. This is the first report of an association of ASIP with specific human pigmentation characteristics. It remains to be investigated whether the interaction of MC1R and ASIP can enhance prediction of human pigmentation and melanoma risk.  相似文献   

13.
14.
The melanocyte-stimulating hormone (MSH) receptor has a major function in the regulation of black (eumelanin) versus red (phaeomelanin) pigment synthesis within melanocytes. We report three alleles of the MSH-receptor gene found in cattle. A point mutation in the dominant allele E D gives black coat color, whereas a frameshift mutation, producing a prematurely terminated receptor, in homozygous e/e animals, produces red coat color. The wild-type allele E + produces a variety of colors, reflecting the possibilities for regulating the normal receptor. Microsatellite analysis, RFLP studies, and coat color information were used to localize the MSH-receptor to bovine Chromosome (Chr) 18.  相似文献   

15.
Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a ~3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.  相似文献   

16.
The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.  相似文献   

17.
Pinschers affected by coat color dilution show a specific pigmentation phenotype. The dilute pigmentation phenotype leads to a silver-blue appearance of the eumelanin-containing fur and a pale sandy color of pheomelanin-containing fur. In Pinscher breeding, dilute black-and-tan dogs are called "blue," and dilute red or brown animals are termed "fawn" or "Isabella fawn." Coat color dilution in Pinschers is sometimes accompanied by hair loss and a recurrent infection of the hair follicles. In human and mice, several well-characterized genes are responsible for similar pigment variations. To investigate the genetic cause of the coat color dilution in Pinschers, we isolated BAC clones containing the canine ortholog of the known murine color dilution gene Mlph. RH mapping of the canine MLPH gene was performed using an STS marker derived from BAC sequences. Additionally, one MLPH BAC clone was used as probe for FISH mapping, and the canine MLPH gene was assigned to CFA25q24.  相似文献   

18.
Tyrosinase activity in the first coat of agouti and black mice   总被引:2,自引:0,他引:2  
Tyrosinase activity was compared in the skin and hair bulbs of young black and agouti mice between 4 and 12 days old. Differences in activity were found to be maximal in both the hair and skin at the time of yellow pigment synthesis in agouti mice. Histological examination suggested that the number of dopa-positive melanocytes is similar in the hair bulbs of agouti and black mice. The level of SH-compounds in the hair bulb was examined and found to be elevated in agouti tissue at the time of phaeomelanin formation. It was shown that sulphydryl compounds such as cysteine and glutathione have an inhibitory effect on tyrosinase, and it is possible that the elevated levels of SH-compounds are responsible for a reduction in tyrosinase activity in agouti mice. In agouti hair bulbs, this effect can be reversed in vitro by addition of copper.  相似文献   

19.
The mutation causing the Silverblue color type (pp) is one of the most used recessive mutations within American mink (Neovison vison) fur farming, since it is involved in some of the popular color types such as Violet and Saphire which originate from a combination of recessive mutations. In the present study, the genomic and mRNA sequences of the melanophilin (MLPH) gene were studied in Violet, Silverblue and wild-type (wt) mink animals. Although breeding schemes and previous literature indicates that the Violet (aammpp) phenotype is a triple recessive color type involving the same locus as the Silverblue (pp) color type, our findings indicate different genotypes at the MLPH locus. Upon comparison at genomic level, we identified two deletions of the entire intron 7 and of the 5′ end of intron 8 in the sequence of the Silverblue MLPH gene. When investigating the mRNA, the Silverblue animals completely lack exon 8, which encodes 65 residues, of which 47 define the Myosin Va (MYO5A) binding domain. This may cause the incorrect anchoring of the MLPH protein to MYO5A in Silverblue animals, resulting in an improper pigmentation as seen in diluted phenotypes. Additionally, in the MLPH mRNA of wt, Violet and Silverblue phenotypes, part of intron 8 is retained resulting in a truncated MLPH protein, which is 359 residues long in wt and Violet and 284 residues long in Silverblue. Subsequently, our findings point out that the missing actin-binding domain, in neither of the 3 analyzed phenotypes affects the transport of melanosomes or the consequent final pigmentation. Moreover, the loss of the major part of the MYO5A domain in the Silverblue MLPH protein seems to be the responsible for the dilute phenotype. Based on our genomic DNA data, genetic tests for selecting Silverblue and Violet carrier animals can be performed in American mink.  相似文献   

20.
Cheprakov MI  Evdokimov NG  Glotov NV 《Genetika》2005,41(11):1552-1558
Based on the ecological features of the mole vole, family analysis of the inheritance of coat color was performed with the use of material collected in a wild population. Analysis of coat color in parents and offspring has demonstrated that the offspring segregation into black and nonblack animals after crosses of different types agrees with the hypothesis on the monogenic inheritance of these color variations. Black mole voles are homozygous for the recessive allele (genotype aa). Homozygotes for the dominant allele (AA) are brown. Heterozygotes (Aa) may be brown or have transitional color. The mean frequency of brown coat color in heterozygotes is 0.509 and is very variable. The higher the color intensity in black elements of parent coat color, the more is the offspring coat color saturated with these elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号