首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The balance between prostacyclin and thromboxane A2 (TXA2) plays an important role in pulmonary homeostasis. However, little information is available regarding the therapeutic potency of these prostanoids for pulmonary fibrosis. We have recently developed ONO-1301, a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity. Thus we investigated whether repeated administration of ONO-1301 attenuates bleomycin-induced pulmonary fibrosis in mice. After intratracheal injection of bleomycin or saline, mice were randomized to receive repeated subcutaneous administration of ONO-1301 or vehicle. Bronchoalveolar lavage (BAL) and histological analyses were performed at 3, 7, and 14 days after bleomycin injection. In vitro studies using mouse lung fibroblasts were also performed. ONO-1301 significantly attenuated the development of bleomycin-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. ONO-1301 significantly reduced total cell count, neutrophil count, and total protein level in BAL fluid in association with a marked reduction of TXB2. A single administration of ONO-1301 significantly increased plasma cAMP level for >2 h. In vitro, ONO-1301 and a cAMP analog dose-dependently reduced cell proliferation in mouse lung fibroblasts. The reduction in cell proliferation by ONO-1301 was attenuated by a protein kinase A (PKA) inhibitor. Furthermore, bleomycin mice treated with ONO-1301 had a significantly higher survival rate than those given vehicle. These results suggest that repeated administration of ONO-1301 attenuates the development of bleomycin-induced pulmonary fibrosis and improves survival in bleomycin mice, at least in part by inhibition of TXA2 synthesis and activation of the cAMP/PKA pathway.  相似文献   

2.
Because of the vasoactive properties of thromboxane A2 and other related prostaglandins, much research has been conducted on drugs which alter their levels. Urinary levels of thromboxane B2 and 2,3-dinor thromboxane B2 (major urinary metabolite of thromboxane B2) are used as an indication of thromboxane production in-vivo. In order to accurately measure urinary TXB2 levels of subjects on investigative drugs which lower TXA2 and subsequently TXB2, a simple and sensitive analytical tool becomes necessary. We have thus developed a non-radioisotopic (chemiluminescent) assay for urinary TXB2. Sensitivity has been demonstrated to 5 pg/ml. The method correlates well with gas chromatography/mass spectrometry (the accepted reference method) even without column chromatographic purification prior to the conduct of the chemiluminescent assay (r = 0.96). In addition, we have demonstrated feasibility for a chemiluminescent assay to measure urinary 2,3-dinor TXB2.  相似文献   

3.
Few studies have reported on the association of viscosity with coronary circulation. We evaluated the change in coronary flow after dextran was added to a perfusion solution to increase viscosity in isolated rat hearts. We also measured NOx- production induced by the change in shear stress in the coronary effluent, as a marker of NO synthesis. The baseline coronary flow was not influenced by the presence of either the cyclooxygenase inhibitor indomethacin, the thromboxane A2 (TXA2)-prostaglandin H2 (PGH2) receptor antagonist ONO-3708, or the TXA2 synthase inhibitor OKY-046. After exposure to solution containing 0.5% dextran, the coronary flow first decreased and then gradually increased until 10 min. The initial decrease in coronary flow was inhibited by indomethacin, ONO-3708, and OKY-046 individually. The gradual increase was completely inhibited by the NO inhibitor L-NAME, but not by indomethacin or ONO-3708. OKY-046 partially inhibited the increase. NOx- levels in the effluent were higher after the dextran solution was administered, and the increased NOx- levels were inhibited by L-NAME. The increased NOx- levels were not inhibited by inhibitors of the cyclooxygenase pathway. It appears that a higher viscosity of perfusion solution induced a gradual increase in NO production and was associated with increased production of indomethacin-sensitive contracting factor.  相似文献   

4.
何斌  葛庆华 《生理学报》1991,43(4):405-409
For evaluating the role of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the metabolism of salt and water, the metabolic products of PGI2 and TXA2 (6-keto-PGF1 alpha and TXB2 respectively) were measured by radioimmunoassay in salt-loaded rabbits. 36 normal rabbits were randomly divided into 3 groups: 1. normal control group; 2. 3h salt-loading group (3 h group); 3. 24 h salt-loading group (24 h group). Both the 3 h and 24 h groups were given 0.9% NaCl solution by subcutaneous injection to the hind legs. The kidneys were dissected into 4 slices: outer cortex, inner cortex, outer medulla and inner medulla. The plasma 6-keto-PGF1 alpha in the 3 h group was increased from the control value of 46.61 +/- 19.04 pg/ml to 111.63 +/- 58.36 pg/ml (P less than 0.01). All of the dissected renal slices also showed significant increase of 6-keto-PGF1 alpha synthesis in both the 3 h and the 24 h groups (P less than 0.001 vs. normal). The urinary sodium concentrations have a good correlation with 6-keto-PGF1 alpha in plasma or in kidney tissues. Plasma TXB2 in normal group was 499.27 +/- 197.86 pg/ml, but no significant change was found in the 3h group. However, in the 24 h group it decreased significantly to 218.76 +/- 114.54 pg/ml (P less than 0.05 vs. normal group). Although the TXB2 increment was significant only in inner medulla, all other dissected renal slices showed some increase of TXB2 synthesis too. It is concluded that salt-loading can cause increase of PGI1 and TXA2 synthesis in normal renal tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Thromboxane A2 (TXA2) and endothelin-1 (ET-1) have been proposed as the important vasoconstrictors that increase portal venous resistance in paracrine or autocrine fashion. We hypothesized that the hepatic damage following trauma-hemorrhage (T-H) is induced by the impaired hepatic circulation due to the increased production of vasoconstrictors such as ET-1 and TXA2 by the liver. To test this, male Sprague-Dawley rats (n = 6/group) were subjected to trauma (i.e., midline laparotomy) and hemorrhage (35-40 mmHg for 90 min followed by fluid resuscitation) or sham operation. At 2 or 5 h after the end of resuscitation, the liver was isolated and perfused and portal inflow pressure, bile flow, and release of ET-1 and thromboxane B2 (TXB2; a stable metabolite of TXA2) into the perfusate were measured. The level of portal pressure was higher at 5 h following T-H compared with 2 h after T-H and sham. The portal pressure was inversely correlated to the amount of bile production. Furthermore, the bile flow was significantly correlated to the hepatic damage as evidenced by release of lactate dehydrogenase into the perfusate. The level of ET-1 at 5 h following T-H in the perfusate after 30 min of recirculation did not show any difference from sham. However, the levels of TXB2 in the T-H group were significantly higher than those in sham at that interval. These results indicate that the increased release of TXA2 but not ET-1 following T-H might be responsible for producing the increased portal resistance, decreased bile production, and hepatic damage.  相似文献   

6.
Following the intravenous administration of thromboxane (TX) B2, the stable hydration product of TXA2, to human and nonhuman primates the most abundant urinary metabolites are 2,3-dinor-TXB2 and 11-dehydro-TXB2. However, it is not known whether fractional conversion of TXB2 to its enzymatic metabolites is an accurate representation of TXA2 metabolism. Thus, we have compared the metabolic disposition of synthetic TXA2 and TXB2 via the beta-oxidation and 11-OH-dehydrogenase pathways in vivo in the monkey. TXA2 or TXB2 (20 ng/kg) was intravenously administered to four cynomolgus monkeys pretreated with aspirin in order to suppress endogenous TXA2 production. Urinary TXB2, 2,3-dinor-TXB2 and 11-dehydro-TXB2 were measured before, during and up to 24 h after thromboxane administration by means of reversed-phase high-performance liquid chromatography radioimmunoassay. Aspirin treatment suppressed urinary 2,3-dinor-TXB2 and 11-dehydro-TXB2 by approx. 75%. A similar fractional conversion of TXA2 and TXB2 into 2,3-dinor-TXB2 and 11-dehydro-TXB2 was found. These results suggest that TXA2 is hydrolyzed to TXB2 prior to enzymatic degradation and that metabolites of the latter represent reliable indices of TXA2 biosynthesis. Due to the variability in the conversion of thromboxanes into 2,3-dinor-TXB2 and 11-dehydro-TXB2, the measurement of both metabolites seems to represent a more reliable index of acute changes in TXA2 production.  相似文献   

7.
8.
The effects were studied of three novel thromboxane A2 (TXA2) receptor antagonists (S-1452, AA-2414 and ONO-3708) on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs. Three TXA2 antagonists at doses of between 1 and 10 mg/kg administered orally 1 h before the challenge clearly inhibited the pulmonary pressure increase. At a dose of 10 mg/kg, all three antagonists inhibited the pulmonary pressure increase caused by leukotriene D4 (LTD4) and U-46619, but not that caused by histamine. The decrease in peripheral platelet counts caused by Forssman anaphylaxis was also clearly inhibited by the three TXA2 antagonists. However, the decreased peripheral leukocyte counts were unaffected by the three agents. The decrease in serum complement activity (CH50) was inhibited by S-1452 and AA-2414 at a dose of 10 mg/kg. In bronchoalveolar lavage fluid (BALF), significant increases in eosinophils and neutrophils were observed after Forssman anaphylaxis. Three TXA2 antagonists at a dose of 10 mg/kg (except for AA-2414 on eosinophils) did not affect the changes of leukocyte counts in BALF. Moreover, increases in the TXB2 and 6-keto-PGF1 alpha levels of the BALF brought about by Forssman anaphylaxis were unaffected by the three TXA2 receptor antagonists. Histamine and LTD4 were not changed in the BALF after Forssman anaphylaxis. These results indicate the efficacy of TXA2 receptor antagonists on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs by direct antagonism to released TXA2.  相似文献   

9.
Urinary TXB2 excretion was measured during pregnancy and labor using high pressure liquid chromatography and radioimmunoassay. From the first trimester onwards TXB2 levels in urine of pregnant women (n = 60) were significantly (p less than 0.001) higher than in non-pregnant women (n = 12) and they increased, albeit not significantly, with advancing gestation. Labor was associated with a two-fold increase in urinary TXB2 excretion. Levels in established labor were significantly higher than at any other time in pregnancy (p less than 0.001), but the levels in incipient labor showed considerable overlap with these in late pregnancy. Thus urinary TXB2, while not necessarily originating from the pregnant uterus, appears to reflect the uterine activity of labor and may be the expression of a general stimulation of prostanoid production during parturition.  相似文献   

10.
The metabolism of thromboxane B2 was studied in the rabbit. The aim of the study was to identify metabolites in blood and urine that might serve as parameters for monitoring thromboxane production in vivo. [5,6,8,9,11,12,14,15-3H8]-Thromboxane B2 was administered by i.v. injection to rabbits, and blood samples and urine were collected with brief intervals. The metabolic profiles were visualized by two-dimensional thin layer chromatography and autoradiography, and the structures of five major metabolites were determined using chromatographic and mass spectrometric methods. In urine the major metabolites were identified as 11-dehydro-TXB2 and 2,3,4,5-tetranor-TXB1, and other prominent products were 11-dehydro-2,3,4,5-tetranor-TXB1, 2,3-dinor-TXB1 and 2,3-dinor-TXB2. In the circulation, TXB2 was found to disappear rapidly. The first major metabolite to appear was 11-dehydro-TXB2, which also remained a prominent product in blood for the remainder of the experiment (90 min). With time, the profile of circulating products became closely similar to that in urine. TXB2 was not converted into 11-dehydro-TXB2 by blood cells or plasma. The dehydrogenase catalyzing its formation was tissue bound and was found to have a widespread occurrence: the highest conversion was found in lung, kidney, stomach and liver. The results of the present study suggest that 11-dehydro-TXB2 may be a suitable parameter for monitoring thromboxane production in vivo in the rabbit in blood as well as urinary samples, and possibly also several tissues. This was also demonstrated in comparative studies using radioimmunoassays for TXB2 and 11-dehydro-TXB2.  相似文献   

11.
Neutrophil-endothelial adhesion in venules and progressive vasoconstriction in arterioles seem to be important microcirculatory events contributing to the low flow state associated with ischemia-reperfusion injury of skeletal muscle. Although the neutrophil CD-18 adherence function has been shown to be a prerequisite to the vasoconstrictive response, the vasoactive substances involved remain unknown. The purpose of this study was to evaluate the role of thromboxane A2 receptor in the arteriole vasoactive response to ischemia-reperfusion injury. An in vivo microscopy preparation of transilluminated gracilis muscle in male Wistar rats (175 +/- 9 g) (n = 12) was used for this experiment. Three experimental groups were evaluated in this study: (1) sham, flap raised, no ischemia (20 venules, 20 arterioles), (2) 4 hours of global ischemia only (19 venules, 22 arterioles), and (3) 4 hours of global ischemia + thromboxane A2 receptor antagonist (ONO-3708) (17 venules, 20 arterioles). ONO-3708 (5 mg/kg), a specific competitive antagonist of thromboxane A2 receptor, was infused at a rate of 0.04 ml/minute into the contralateral femoral vein 30 minutes before reperfusion. Mean arterial blood pressure was not changed at this dose of ONO-3708 (88 +/- 6 mmHg before infusion, 81 +/- 4 mmHg after infusion, n = 3). The number of leukocytes rolling and adherent to endothelium (15-sec observation) were counted in 100-microm venular segments, and arteriole diameters were measured at 5, 15, 30, 60, and 120 minutes of reperfusion. Leukocyte counts and arteriole diameters were analyzed with two-way factorial analysis of variance for repeated measures and Duncan's post hoc mean comparison. Statistical significance was indicated by a p < or = 0.05. The ischemia-reperfusion-induced vasoconstriction was significantly reduced by the thromboxane A2 receptor antagonist (ONO-3708). The mean arteriole diameters at 30, 60, and 120 minutes reperfusion were significantly greater in the treated animals than in the ischemia-reperfusion controls. Despite a significant increase in treated mean arteriole diameters, 30 percent of arterioles still demonstrated vasoconstriction. Neutrophil-endothelial adherence was not reduced by ONO-3708. Thromboxane A2 receptor blockade significantly reduces but does not eliminate ischemia-reperfusion-induced vasoconstriction in this model. This finding suggests that additional and perhaps more important vasoactive mediators contribute to vasoconstriction. Furthermore, thromboxane A2 receptor blockade has no effect on polymorphonuclear endothelial adherence.  相似文献   

12.
An antibody-mediated extraction method for gas chromatographic-mass spectrometric analysis of thromboxane A2 (TXA2) urinary metabolites is reported. An antibody (Ab) raised against thromboxane B2 (TXB2) (35% cross-reacting with 2,3-dinor-TXB2) was coupled to CNBr-activated Sepharose 4B (Se) and used as stationary phase for simultaneous extraction of both compounds from urine. After addition of deuterium-labeled TXB2 as internal standard, rat or human urine was percolated through a small Ab-Se column. After being washed, the eluate was directly derivatized to the pentafluorobenzyl ester, methyloxime, and trimethylsilyl ether. Quantitation was performed by high-resolution gas chromatography-negative-ion chemical ionization mass spectrometry, monitoring the carboxylate anions. This method was applied to evaluate the urinary excretion of TXB2 and 2,3-dinor-TXB2 in humans and rats. We report on the excretion of 2,3-dinor-TXB2 in the rat. This novel approach to the extraction of urinary thromboxanes is more convenient than currently available methods in terms of simplicity, rapidity, and recovery. This method could be extended to any other prostanoid for which an antibody could be obtained.  相似文献   

13.
K Bj?ro 《Prostaglandins》1986,31(4):699-714
The formation of prostacyclin (PGI2) and thromboxane A2 (TXA2) (measured as the stable metabolites 6-keto-PGF1 alpha and TXB2) during stimulation with vasoactive autacoids was registered in human umbilical arteries perfused in vitro. Responses were registered within 3-4 minutes after addition of the substances. Both angiotensin I and II were found to increase the formation of PGI2 while depressing that of TXA2. Serotonin increased the formation of TXA2 but not that of PGI2. Both PGE2 and PGF2 alpha stimulated the PGI2 formation. The TXA2 mimetic U46619, increased PGI2 production, whereas PGI2 slightly increased the formation of TXA2. All responses were found to be completely inhibited by indomethacin.  相似文献   

14.
Whilst elevated urinary transforming growth factor beta-1 (TGFbeta) is associated with chronic renal dysfunction its role in acute peri-operative renal dysfunction is unknown. In contrast, peri-operative increases in urinary IL-1 receptor antagonist (IL-1ra) and TNF soluble receptor-2 (TNFsr-2) mirror pro-inflammatory activity in the nephron and correlate with renal complications. Steroids modulate some plasma cytokines (decreasing TNFalpha, IL-8, IL-6 and increasing IL-10), whereas ability to reduce plasma and urinary TNFsr-2 and IL-1ra and peri-operative renal injury is unknown. Patients undergoing coronary artery bypass grafting with cardiopulmonary bypass (CPB) were randomised to receive methylprednisolone (n = 18) or placebo (n = 17) before induction of anaesthesia. Plasma and urinary pro- and anti-inflammatory cytokine balance was determined along with subclinical proximal tubular injury and dysfunction, measured by urinary N-acetyl-beta-d-glucosaminidase (NAG)/creatinine and alpha-1-microglobulin/creatinine ratios, respectively. In the control group compared with baseline, plasma IL-8, TNFalpha, IL-10, IL-1ra and TNFsr-2 were significantly elevated along with urinary IL-1ra, TNFsr-2 and TGFbeta1. Urinary NAG/creatinine and alpha-1-microglobulin/creatinine ratios rose from completion of revascularisation until 6 h with recovery at 24 h with a further rise in NAG/creatinine ratio at 48 h. Compared to placebo, the methylprednisolone group showed significantly reduced plasma IL-8, TNFalpha, IL-1ra and TNFsr-2 whereas plasma IL-10 increased. Compared to placebo, the methylprednisolone group demonstrated significantly reduced urinary NAG/creatinine ratio, TNFsr-2 and TGFbeta1 at 24 h whereas urinary alpha-1-microglobulin/creatinine ratios increased. CONCLUSIONS: Methylprednisolone administration during cardiac surgery significantly reduces plasma and urinary TNFsr-2 and IL-1ra, urinary TGFbeta1 and subclinical renal injury but not dysfunction.  相似文献   

15.
We studied the effects of two structurally unrelated inhibitors of the fatty acid cyclooxygenase and of alpha and beta adrenergic blockade on the elevated plasma levels of 13,14-dihydro-15-keto-prostaglandin (PG)E2, 6-keto-PGF1 alpha and thromboxane (TX)B2, the stable derivatives of PGE2, PGI2 (prostacyclin) and TXA2, respectively, in rats with streptozotocin-induced diabetic ketoacidosis (DKA). Meclofenamic acid and indomethacin each produced a significant decrease in the elevated plasma levels of 13,14-dihydro-15-keto-PGE2, 6-keto-PGF1 alpha and TXB2. Phentolamine significantly reduced the plasma level of TXB2 but had no effect on the elevated circulating levels of glucose, free fatty acids, total ketones, 13,14-dihydro-15-keto-PGE2 or 6-keto-PGF1 alpha. Propranolol significantly reduced the elevated circulating levels of glucose, free fatty acids and total ketones but had no effect on the levels of the three prostaglandin derivatives. The ability of meclofenamic acid and indomethacin to reduce the plasma levels of 13,14-dihydro-15-keto-PGE2, 6-keto-PGF1 alpha and TXB2 confirms that the plasma levels of these three derivatives are elevated in rats with DKA. Since abnormalities in the production of PGI2 and perhaps other cyclooxygenase derivatives may contribute to the pathogenesis of certain important hemodynamic and gastrointestinal features of DKA, cyclooxygenase inhibitors may play a role in the management of selected patients with this disorder. Alpha adrenergic activity is essential for the maintenance of the elevated plasma TXB2 level in rats with DKA. The fall in the plasma TXB2 level during alpha adrenergic blockade appears to reflect inhibition of platelet aggregation and platelet TXA2 production, but other sources of the elevated plasma TXB2 level in DKA are not excluded. Beta adrenergic activity contributes to the maintenance of elevated circulating levels of glucose, free fatty acids and total ketones in experimental DKA but not to the elevated plasma levels of the prostaglandin derivatives.  相似文献   

16.
11-Dehydrothromboxane B2 is one of the major enzymatic metabolites of thromboxane B2 (TXB2), a biologically inactive product of thromboxane A2. The short half-life of thromboxane A2 and ex vivo production of thromboxane B2 by platelet activation make these prostanoid metabolites inappropriate as indices of systemic thromboxane biosynthesis, whereas 11-dehydro-TXB2 has been shown to reflect the release of thromboxane A2 in the human blood circulation. Analysis of 11-dehydro-TXB2 in plasma and urine was performed by gas chromatography-mass spectrometry-mass spectrometry using the chemically synthesized tetradeuterated compound as an internal standard. The high selectivity of triple-stage quadrupole mass spectrometry (tandem mass spectrometry) considerably facilitates sample purification as compared to single quadrupole mass spectrometric determination. Plasma concentrations in five healthy male volunteers were in the range 0.8-2.5 pg/ml. Urinary excretion of 11-dehydro-TXB2 was higher than that of 2,3-dinor-TXB2: 1.2 +/- 0.36 micrograms/24 h vs 0.53 +/- 0.33 micrograms/24 h (n = 5). Thus 11-dehydro-TXB2 appears at present to be the best index metabolite of systemic TXA2 activity in plasma as well as in urine.  相似文献   

17.
In order to identify suitable parameters for measurement of thromboxane production in vivo, the metabolism of TXB2 was studied in the human. [3H8]-TXB2 was given intravenously to a healthy human volunteer. Blood samples were collected for 50 min after the injection, and urine was collected for 24 hours. The urinary and blood metabolic profiles were visualized by the use of two-dimensional TLC and autoradiography. Identification of metabolites was achieved with GC/MS and in some cases by cochromatography with reference compounds in TLC and GC. In blood, unmetabolized TXB2 was the dominating compound during the first 30 min. Three less polar metabolites appeared, two of which were identified as 11-dehydro-TXB2 and 11,15-didehydro-13,14-dihydro-TXB2, respectively. The third compound was tentatively identified as 15-dehydro-13,14-dihydro-TXB2. Since 11-dehydro-TXB2 was one of the major metabolites in blood as well as urine, it was deemed suitable as target for measurement of thromboxane production in vivo. The advantages of 11-dehydro-TXB2 over its parent compound, TXB2, were demonstrated in experiments where unlabeled TXB2 was injected i.v. to a human volunteer, and the blood and urinary levels of both compounds were then followed by radioimmunoassay. Measured levels of 11-dehydro-TXB2 were found to give a more reliable picture of metabolic events than TXB2, the latter compound to a large extent reflecting technical difficulties during blood sample collection.  相似文献   

18.
Although the mechanisms of cirrhosis-induced portal hypertension have been studied extensively, the role of thromboxane A(2) (TXA(2)) in the development of portal hypertension has never been explicitly explored. In the present study, we sought to determine the role of TXA(2) in bile duct ligation (BDL)-induced portal hypertension in Sprague-Dawley rats. After 1 wk of BDL or sham operation, the liver was isolated and perfused with Krebs-Henseleit bicarbonate buffer at a constant flow rate. After 30 min of nonrecirculating perfusion, the buffer was recirculated in a total volume of 100 ml. The perfusate was sampled for the enzyme immunoassay of thromboxane B(2) (TXB(2)), the stable metabolite of TXA(2). Although recirculation of the buffer caused no significant change in sham-operated rats, it resulted in a marked increase in portal pressure in BDL rats. The increase in portal pressure was found concomitantly with a significant increase of TXB(2) in the perfusate (sham vs. BDL after 30 min of recirculating perfusion: 1,420 +/- 803 vs. 10,210 +/- 2,950 pg/ml; P < 0.05). Perfusion with a buffer containing indomethacin or gadolinium chloride for inhibition of cyclooxygenase (COX) or Kupffer cells, respectively, substantially blocked the recirculation-induced increases in both portal pressure and TXB(2) release in BDL group. Hepatic detection of COX gene expression by RT-PCR revealed that COX-2 but not COX-1 was upregulated following BDL, and this upregulation was confirmed at the protein level by Western blot analysis. In conclusion, these results clearly demonstrate that increased hepatic TXA(2) release into the portal circulation contributes to the increased portal resistance in BDL-induced liver injury, suggesting a role of TXA(2) in liver fibrosis-induced portal hypertension. Furthermore, the Kupffer cell is likely the source of increased TXA(2), which is associated with upregulation of the COX-2 enzyme.  相似文献   

19.
Li S  Li X  Li J  Deng X  Li Y 《Steroids》2007,72(13):875-880
BACKGROUND: Platelets play a crucial role in the development of arterial thrombosis and other pathophysiologies leading to clinical ischemic events. Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis. The purposes of our study are to assess the effect of androgen at physiological concentration via its receptor on oxidative-stress-induced platelet aggregation and to further elucidate the possible mechanism. METHODS AND RESULTS: Plasma dihydrotestosterone (DHT) was determined by ELISA using a commercially available kit. Platelet aggregometer was used to measure platelet aggregation. The contents of thromboxane B(2) (TXB(2)) were assayed with radio-immunoassay. Our results showed that addition of DHT (2 nM) significantly inhibited platelet aggregation induced by hydrogen peroxide (H(2)O(2)) (10 mM, 25 mM) in PRP diluted with Tyrode's buffer. Moreover, H(2)O(2)-induced platelet aggregation decreased in sham-operated rats. However, H(2)O(2)-induced platelet aggregation significantly increased in castrated rats. Replacement of DHT inhibited H(2)O(2)-induced platelet aggregation in castrated rats. After PRP was pretreated with flutamide, H(2)O(2)-induced platelet aggregation increased in castrated rats again. Presence of DHT (2 nM) obviously inhibited H(2)O(2)-induced thromboxane A(2) (TXA(2)) release in castrated rats. Pretreatment of DHT and flutamide increased H(2)O(2)-stimulated TXA(2) release from platelet in castrated rats again. Castration caused a significant reduction in plasma testosterone and DHT levels, whereas DHT replaced at a dose of 0.25 mg/rat restored the circulating DHT to physiological levels, without being altered by treatment with flutamide. The plasma TXB(2) increased in castrated rats as compared with that in sham-operated rats. Replacement with DHT reduced plasma TXB(2) contents in castrated rats. However, flutamide supplementation increased plasma contents of TXB(2) in castrated rats again. CONCLUSION: Androgen at physiological doses via its receptor inhibits oxidative-stress-induced platelet aggregation, which is associated with the reduction of TXA(2) release from platelets.  相似文献   

20.
We used rats (the Otsuka Long-Evans Tokushima Fatty strain) as a model of type 2 diabetes to find whether thromboxane (TX) A2 is involved in diabetic nephropathy, and if so, to identify where it is synthesized. We measured urinary excretion of TXB2 and 2,3-dinor-TXB2 in rats up to 60 weeks of age as markers of renal and platelet synthesis of TXA2, respectively. Some diabetic rats were given daily oral doses of OKY-046 (100 mg/kg), a TXA2 synthase inhibitor, starting when they were 10 weeks of age. Healthy Long-Evans Tokushima Otsuka rats served as the controls. Urinary excretion of protein was greater in diabetic rats at 26 weeks than in controls, and the difference increased with age. Urinary excretion of TXB2 by diabetic rats was about 150% that of controls at 14 weeks, and remained at that level. In diabetic rats, urinary excretion of 2,3-dinor-TXB2 increased with age in parallel to increases in proteinuria, but in controls, excretion of these metabolites did not change with age. In diabetic rats, OKY-046 prevented the increase in urinary excretion of both metabolites, and decreased the proteinuria. Histologic examination at 60 weeks showed intraglomerular thrombi in diabetic rats but not in controls. OKY-046 reduced intraglomerular thrombi formation and the score for glomerulosclerosis. When platelet aggregation began, more TXA2 than before was released from the thrombi that formed, and the TXA2 contributed to the progress of nephropathy in this rat model of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号