首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
asmA mutations were isolated as extragenic suppressors of an OmpF assembly mutant, OmpF315. This suppressor locus produced a protein that was present in extremely low levels and could only be visualized by Western blotting in cells where AsmA expression was induced from a plasmid. Detailed fractionation analyses showed that AsmA localized with the inner membrane. Curiously, however, the mutant OmpF assembly step influenced by AsmA occurred in the outer membrane, perhaps indicating an indirect involvement of AsmA in the assembly of outer membrane proteins. Biochemical examination of the outer membrane showed that asmA null mutations reduce lipo-polysaccharide (LPS) levels, thereby lowering the ratios of glycerolphospholipids to LPS and envelope proteins to LPS in the outer membrane. Despite these quantitative alterations, no apparent structural changes in LPS or major phospholipids were noted. Reduced LPS levels in asmA mutants indicate a possible role of AsmA in LPS biogenesis. Data presented in this study suggest that asmA-mediated OmpF assembly suppression may have been achieved by altering the outer membrane fluidity, thus making it more amenable for the assembly of mutant proteins.  相似文献   

2.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

3.
R Misra 《Journal of bacteriology》1993,175(16):5049-5056
This paper describes a novel genetic method used to isolate mutations that alter proper assembly of OmpF in the outer membrane. The thermolabile nature of assembly intermediates allowed selection of temperature-sensitive mutations within the ompF gene. A variant allele of ompF (ompF-Dex) was used because it provided a convenient selectable phenotype (Dex+). Assembly mutants were isolated in two steps. First, amber mutations were obtained that mapped in ompF-Dex. This resulted in a Dex- phenotype. Starting with these Dex- strains, Dex+ revertants were isolated. Mutants that displayed a temperature-sensitive Dex+ phenotype were further characterized. Three such mutants possessed a single substitution within ompF that reverted the nonsense codon to a sense codon which replaced W214 with either an E or Q and Y231 with a Q residue in the mature OmpF protein. All three mutant OmpF proteins showed an assembly defect. This defect led to a substantial reduction in the amount of stable OmpF trimers with the concomitant increase of a high-molecular-weight form of OmpF which migrated at the top of the gel. Suppressor mutations were sought that corrected the assembly defect of OmpF. These extragenic suppressor mutations were mapped at 45 min on the Escherichia coli chromosome. The suppressor mutations displayed no allele specificity and were recessive to the wild-type allele. In the presence of a suppressor, mutant stable trimers appeared in an almost normal manner. The appearance of stable trimers concurred with a substantial loss of the high-molecular-weight OmpF species. At this stage, it is not clear whether the high-molecular-weight species of OmpF is a normal assembly intermediate or a dead-end assembly product. The results presented in this study raise the intriguing possibility of a chaperone-like activity for the wild-type suppressor gene product.  相似文献   

4.
The assembly defect of a mutant outer membrane protein, OmpF315, can be corrected by suppressor mutations that lower lipopolysaccharide (LPS) levels and indirectly elevate phospholipid levels. One such assembly suppressor mutation, asmB1 , is an allele of lpxC ( envA ) whose product catalyses the first rate-limiting step in the lipid A (LPS) biosynthesis pathway. Besides reducing LPS levels, asmB1 confers sensitivity to MacConkey medium. A mutation, sabA1 , that reverses the MacConkey sensitivity phenotype of asmB1 maps within fabZ (whose product is needed for phospholipid synthesis from a precursor) is also required for lipid A synthesis. In addition to reversing MacConkey sensitivity, the sabA1 mutation reverses the OmpF315 assembly suppression phenotype of asmB1 . These results show that OmpF315 assembly suppression by asmB1 , which is achieved by lowering LPS levels, can be averted by a subsequent aberration in phospholipid synthesis at a point where the biosynthetic pathways for these two lipid molecules split. OmpF315 assembly suppression can also be achieved in an asmB + background where FabZ expression is increased. The data obtained in this study provide genetic evidence that elevated phospholipid levels and/or phospholipid to LPS ratios are necessary for assembly suppression.  相似文献   

5.
We employed two separate genetic approaches to examine the roles of various OmpF residues in assembly. In one approach, intragenic suppressors of a temperature-sensitive OmpF assembly mutant carrying a W214E substitution were sought at 42 degrees C, or at 37 degrees C in a genetic background lacking the periplasmic folding factor SurA. In the majority of cases (58 out of 61 revertants), the suppressors mapped either at the original site (position 214) or two residues downstream from it. In the remaining three revertants that were obtained in a surA background, an alteration of N230Y was located 16 residues away from the original site. The N230Y suppressor also corrected OmpF315 assembly at 42 degrees C in a surA(+) background, indicating that the two different physiological environments imposed similar assembly constraints. The specificity of N230Y was tested against five different residues at position 214 of mature OmpF. Clear specificity was displayed, with maximum suppression observed for the original substitution at position 214 (E214) against which the N230Y suppressor was isolated, and no negative effect on OmpF assembly was noted when the wild-type W214 residue was present. The mechanism of suppression may involve compensation for a specific conformational defect. The second approach involved the application of informational suppressors (Su-tRNA) in combination with ompF amber mutations to generate variant OmpF proteins. In this approach we targeted the Y40, Q66, W214, and Y231 residues of mature OmpF and replaced them with S, Q, L, and Y through the action of Su-tRNAs. Thus, a total of 16 variant OmpF proteins were generated, of which three were identical to the parental protein, and two variants carrying W214Q and Y231Q substitutions were similar to assembly-defective proteins isolated previously (R. Misra, J. Bacteriol. 175:5049-5056, 1993). The results obtained from these analyses provided useful information regarding the compatibility of various alterations in OmpF assembly.  相似文献   

6.
A W Kloser  M W Laird    R Misra 《Journal of bacteriology》1996,178(17):5138-5143
A novel genetic scheme allowed us to isolate extragenic suppressor mutations that restored mutant OmpF assembly. One group of these mutations, termed asmB for assembly suppressor mutation B, permitted mutant OmpF assembly in a non-allele-specific manner. Genetic mapping analyses placed the asmB mutations at the 2-min region of the Escherichia coli K-12 chromosome. Further analyses revealed that the asmB mutations map within the envA (lpxC) gene, which encodes an enzyme needed for the synthesis of the lipid A moiety of lipopolysaccharide (LPS). Nucleotide sequence analysis showed that the asmB mutations caused a change from F-50 to S (F50S substitution) (asmB2 and asmB3) or a G210S substitution (asmB1) in EnvA. Cells bearing the asmB alleles displayed increased sensitivity to various hydrophobic compounds and detergents, suggesting an alteration within the outer membrane. Direct examination (of the LPS showed that its amounts were reduced by the asmB mutations, with asmB1 exerting a greater effect than asmB2 or asmB3. Thus, it appears that the asmB mutations achieve mutant OmpF assembly suppression by reducing LPS levels, which in turn may alter membrane fluidity.  相似文献   

7.
Replacement of OmpF's conserved carboxy-terminal phenylalanine with dissimilar amino acids severely impaired its assembly into stable trimers. In some instances, interactions of mutant proteins with the outer membrane were also affected, as judged by their hypersensitivity phenotype. Synthesis of all mutant OmpF proteins elevated the expression of periplasmic protease DegP, and synthesis of most of them made its presence obligatory for cell viability. These results showed a critical role for DegP in the event of aberrant outer membrane protein assembly. The lethal phenotype of mutant OmpF proteins in a degP null background was eliminated when a protease-deficient DegP(S210A) protein was overproduced. Our data showed that this rescue from lethality and a subsequent increase in mutant protein levels in the envelope did not lead to the proper assembly of the mutant proteins in the outer membrane. Rather, a detergent-soluble and thermolabile OmpF species resembling monomers accumulated in the mutants, and to a lesser extent in the parental strain, when DegP(S210A) was overproduced. Interestingly, this also led to the localization of a significant amount of mutant polypeptides to the inner membrane, where DegP(S210A) also fractionated. These results suggested that the DegP(S210A)-mediated rescue from toxicity involved preferential sequestration of misfolded OmpF monomers from the normal assembly pathway.  相似文献   

8.
A search was performed for a periplasmic molecular chaperone which may assist outer membrane proteins of Escherichia coli on their way from the cytoplasmic to the outer membrane. Proteins of the periplasmic space were fractionated on an affinity column with sepharose-bound outer membrane porin OmpF. A 17kDa polypeptide was the predominant protein retained by this column. The corresponding gene was found in a gene bank; it encodes the periplasmic protein Skp. The protein was isolated and it could be demonstrated that it bound outer membrane proteins, following SDS-PAGE, with high selectivity. Among these were OmpA, OmpC, OmpF and the maltoporin LamB. The chromosomal skp gene was inactivated by a deletion causing removal of most of the signal peptide plus 107 residues of the 141-residue mature protein. The mutant was viable but possessed much-reduced concentrations of outer membrane proteins. This defect was fully restored by a plasmid-borne skp gene which may serve as a periplasmic chaperone.  相似文献   

9.
10.
To test the importance of N-terminal pre-sequences in translocation of different classes of membrane proteins, we exchanged the normal signal sequence of an Escherichia coli outer membrane protein, OmpF, for the pre-sequence of the inner membrane protein, DacA. The DacA-OmpF hybrid was efficiently assembled into the outer membrane in a functionally active form. Thus the pre-sequence of DacA, despite its relatively low hydrophobicity compared with that of OmpF, contains all the essential information necessary to initiate the translocation of OmpF to the outer membrane. Since processing of DacA was also shown to be dependent upon SecA we conclude that the initiation of translocation of this inner membrane polypeptide across the envelope occurs by the same mechanism as outer membrane and periplasmic proteins. The N-terminal 11 amino acids of mature OmpF, which in the hybrid are replaced by the N-terminal nine amino acids of DacA, carry no essential assembly signals since the hybrid protein is apparently assembled with equal efficiency to OmpF.  相似文献   

11.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly.  相似文献   

12.
Inducible hybrid genes encoding two large domains, a periplasmic domain consisting of the PhoS sequence and an outer membrane domain corresponding to various lengths of the OmpF mature sequence were constructed. The synthesized hybrid polypeptides are correctly processed during the early times of induction, their precursor forms being accumulated at later times. These hybrids restore sensitivity toward colicin A to ompF E coli B strain which suggests an outer membrane location. At least 2 of them are indeed localized in the outer membrane after immunogold labelling on ultrathin cryosections. Insertion of a hydrophobic sequence between PhoS and OmpF improves the trimerization and the assembly of the OmpF part. Only the hybrids presenting the last C-terminal 29 residues of OmpF are able to promote the colicin N killing action and to exhibit a trimeric conformation which is recognized by specific antibodies. Moreover, the deletion of the C-terminal region impairs the functional insertion of the OmpF domain; this indicates that the last membrane-spanning region of OmpF is necessary for the correct folding and orientation of the protein in the outer membrane.  相似文献   

13.
14.
Expression of the ompF and ompC genes, which encode the major outer membrane proteins, OmpF and OmpC, respectively, is affected in a reciprocal manner by the osmolarity of the growth medium. This osmoregulation is mediated by the OmpR protein, a positive regulator of both genes, which is encoded by the ompR gene. Structural and functional properties of this regulatory protein were studied through complementation analysis of the wild-type and five mutant ompR genes that exhibited differences in osmoregulation of the expression of the OmpF and OmpC proteins. Complementation was carried out with combinations of a host strain and a plasmid, each of which carried either the wild-type or a mutant ompR gene. In some combinations, negative complementation was observed. For example, ompR1, a deletion mutation with an OmpF- OmpC- phenotype, was dominant to OmpF+ or OmpC+ phenotypes conferred by other ompR genes. Positive complementation of two mutant ompR genes was also observed in other combinations, when the two mutations were distantly located from each other on the OmpR protein. These results, together with other observations, support the view that the OmpR protein has a two-domain structure, each domain exhibiting a different role in the expression of the OmpF and OmpC proteins, and that this protein takes a multimeric structure as a functional unit.  相似文献   

15.
16.
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively.  相似文献   

17.
Summary Temperature-sensitive (ts) mutations were isolated within a ribosomal protein gene (rpsL) of Escherichia coli K12. Mutations were mapped by complementation using various transducing phages and plasmids carrying the rpsL gene, having either a normal or a defective promoter for the rpsL operon. One of these mutations, ts118, resulted in a mutant S12 protein which behaved differently from the wild-type S12 on CM-cellulose column chromatography. Suppressors of these ts mutations were isolated and characterized; one was found to be a mutation of a nonribosomal protein gene which was closely linked to the RNAase III gene on the E. coli chromosome. This suppressor, which was recessive to its wild-type allele, was cloned into a transducing phage and mapped finely. A series of cold-sensitive mutations, affecting the assembly of ribosomes at 20°C, was isolated within the purL to nadB region of the E. coli chromosome and one group, named rbaA, mapped at the same locus as the suppressor mutation, showing close linkage to the RNAase III gene.  相似文献   

18.
19.
An ompB strain of Escherichia coli K-12 lacking major outer membrane proteins OmpC and OmpF was used to isolate a pair of mutants that have restored the ability to synthesize either OmpC or OmpF protein. These mutants were found to produce the respective proteins constitutively under the several conditions where the synthesis in the wild-type strain was markedly repressed; namely, in the absence of the ompB gene function, under restrictive medium conditions, or upon lysogenization with phage PA-2. The mutations ompCp1 and ompFp9 responsible for such synthesis were shown to be located in the close vicinity of the corresponding structural genes, ompC and ompF. Moreover, the mutations affect the expression of these genes in a cis-dominant fashion. Taken together with other evidence, it was suggested that ompCp1 and ompFp9 represent regulatory site mutations occurring at the promoter regions of ompC and ompF respectively. Relevance of these findings to the genetic control of outer membrane protein synthesis is discussed.  相似文献   

20.
This study was undertaken to investigate the proposed in vivo pore function of PhoE protein, an Escherichia coli K12 outer membrane protein induced by growth under phosphate limitation, and to compare it with those of the constitutive pore proteins OmpF and OmpC. Appropriate mutant strains were constructed containing only one of the proteins PhoE, OmpF or OmpC, or none of these proteins at all. By measuring rates of nutrient uptake at low solute concentrations, the proposed pore function of PhoE protein was confirmed as the presence of the protein facilitates the diffusion of Pi through the outer membrane, such that a pore protein deficient strain behaves as a Km mutant. Comparison of the rates of permeation of Pi, glycerol 3-phosphate and glucose 6-phosphate through pores formed by PhoE, OmpF and OmpC proteins shows that PhoE protein is the most effective pore in facilitating the diffusion of Pi and phosphorus-containing compounds. The three types of pores were about equally effective in facilitating the permeation of glucose and arsenate. Possible reasons for the preference for Pi and Pi-containing solutes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号